Abstract:
The present invention relates to an optical fiber for a fiber optic sensor, comprising a first optical grating adapted to operate over a first range of wavelengths; and at least one set of further gratings adapted to operate over a second range of wavelengths, each grating being adapted to operate over a portion of the second range; wherein, each grating within said set has an operating range that partially overlaps with at least one other such grating operating range. The invention also extends to a sensor system, and method, using such an optical fiber.
Abstract:
A system for identifying the likelihood of a wind turbine rotor blade striking a wind turbine tower comprises a device for sensing bending of a wind turbine rotor blade and a device for sensing bending of a wind turbine tower. In a preferred embodiment Long Period Grating (LPG) sensors are used to measure bending of the tower. Preferably a plurality of LPG sensors is provided along the length of the blade. In one embodiment at least one of the LPG sensors comprises two sensing elements arranged to sense in perpendicular directions. In another embodiment a plurality of LPG sensors are provided each on different sides of the wind turbine tower. A processor uses the sensed blade and tower bending to determine whether the distance between the blade and the tower will be below a predetermined minimum value. If the distance is determined to be below the predetermined minimum value a controller may be used to adjust a wind turbine variable to reduce loading on the blade and thereby reduce the likelihood of a tower strike.
Abstract:
A yaw sensor for a wind turbine is described. The yaw sensor comprises a rotary switch, configured to be coupled to a yaw drive gearbox of a wind turbine nacelle, the rotary switch being operable to activate and deactivate an electrical contact in dependence on an amount of yaw rotation of the nacelle relative to a start position. The electrical contact is active at a plurality of first yaw rotation ranges with respect to the start position, and inactive at a plurality of second yaw rotation ranges with respect to the start position, the first and second yaw rotation ranges being interleaved, at least some of the first yaw rotation ranges having different lengths from each other and/or at least some of the second yaw rotation ranges having different lengths from each other. The electrical contact generates an electrical signal when active.
Abstract:
A system and method of detecting damage to a wind turbine blade uses one or more fluorescent optical fibers comprising a fluorescent material having an excitation wavelength that is selected such that the material fluoresces upon exposure to ambient radiation at the wind turbine blade, wherein the one or more optical fibers are operatively mounted within the wind turbine blade such that upon damage to the wind turbine blade at least a part of the optical fiber is exposed at the surface of the blade causing the optical fiber to fluoresce; a light detector for receiving a light signal from one or from both ends of the one or more optical fibers upon excitation of the fluorescent material and outputting a signal based on the light signal; and a controller coupled to the light detector to receive the signal.
Abstract:
A sensor system for measuring an operating parameter of a wind turbine component is described. The fiber optic sensor system comprises a light source for outputting light in a predetermined range of wavelengths, and an optical fiber comprising a long Fiber Bragg Grating, extending continuously over a length of the optical fiber to provide a continuous measurement region in the optical fiber. The optical fiber is coupled to the wind turbine component such that the continuous measurement region is located at a region of the wind turbine component to be sensed, and such that the grating period at each location in the continuous measurement period is dependent upon the value of the operating parameter at that location. A light detector receives light from the optical fiber, and provides an output signal to the controller indicating the intensity of the received light; based on the detected light, a value for the operating parameter is determined.
Abstract:
A sensor system and method for a power electronics module is discussed. The system comprises a optical fibre 318 mounted inside the module housing 302 and connected to an external sensor system 320 (not shown). The optical fibre 318 is arranged so that it lies proximate to one or more semiconductor dies 308 within the housing, and can sense their temperature. The fibre can be connected to the die 308 by glue, mechanical connection, or can in other examples by provided in the underlying support structure such as a DCB (direct copper bonded ceramic structure) or base plate 304. The fibre can contain an optical grating, such as an FBG or LPG, or can operate based on interferometry, to detect temperature or strain.