Abstract:
The invention relates to a method for controlling a power generating unit. The method includes determining a virtual impedance value (Zvir), determining a virtual grid power (Pvsm) based on the virtual resistance value (Rvir) and the grid current (Igrid), determining a virtual synchronous machine rotational speed (ωVSM) and/or a synchronous machine angle (θVSM) of a virtual synchronous generator, and determining a voltage reference (Vabc) for controlling a line side converter to generate the desired reactive power (Qgrid) based on the virtual synchronous machine rotational speed or angle (ωVSM, θVSM), a virtual voltage (ΔVαβ, ΔVdq) and the voltage magnitude reference (Vqref).
Abstract:
A method (200) for operating a renewable energy power plant comprising a plurality of renewable energy generators. The method comprises: identifying (202) a predetermined condition of the renewable energy power plant, of the grid, or of the connection between the renewable energy power plant and the grid, the predetermined condition indicating a weak grid interconnection between the renewable energy power plant and the grid; and controlling (206) each renewable energy generator in an adaptive active power mode in response to recovery of the grid from a voltage deviation. The adaptive active power mode comprises: determining (210) a thermal capacity of a chopper resistor of the renewable energy generator; calculating (212), based upon the determined thermal capacity, a limit level of rate of change of active power output that may be implemented by the renewable energy generator; and operating (214) the renewable energy generator to output active power at the calculated rate of change limit level.
Abstract:
A method, converter arrangement, and controller are disclosed for connecting an output of a converter with an electrical grid to control inrush currents into a grid filter assembly connected with the output of the converter, the electrical grid carrying an alternating current (AC) signal having one or more phases. The method includes determining a voltage of the AC signal and operating, after pre-charging a direct current (DC) link of the converter to a predetermined voltage, the converter using open-loop voltage control to produce an AC output signal that substantially matches the AC signal of the electrical grid. The open-loop voltage control is based on the determined voltage of the AC signal. The method further includes closing, after a predetermined amount of time of operating the converter using the open-loop voltage control, a switching device to thereby connect the output of the converter with the electrical grid.
Abstract:
A method of controlling a full-scale converter system in which both the grid-side inverter unit and the generator-side inverter unit have a series-connection of parallel inverters and form a generator-side and grid-side voltage-center-point at a voltage level between the inverters connected in series. The voltage-center-points are electrically connected by a center-line conductor. Conversion operation with a de-rated maximum active power-output is performed in response to at least one of (i) the grid-side inverter and (ii) the generator-side inverter of the first converter-string being disabled, by disabling active power production of at least one of (i) the grid-side inverter and (ii) the generator-side inverter of the second converter-string, or correspondingly reducing active power production of the second converter-string, thereby preventing a compensation current along the center-line conductor.
Abstract:
A wind turbine generator 1 supplies three-phase a.c. current of variable voltage and variable frequency to two pairs of rectifiers 4a, 4b and 4c, 4d which generate respective d.c. outputs connected to positive, negative and neutral d.c. conductors 6, 7, 8. The outputs from each pair of rectifiers are connected together, and the outputs from the two pairs are connected in series to create a high-voltage d.c. output. Inverters 10a, 10b, 10c, 10d then convert the d.c. power to a.c. at a fixed frequency and voltage suitable for connection to the mains grid. To reduce the effect of common-mode noise, a capacitor is connected between the 1 neutral conductor7 and earth, and a respective filter circuit 30 is connected between each of the a.c. outputs of the inverters 10a, 10b, 10c, 10d and earth. To reduce the effect of voltage surges during lightning, a surge protection device is also connected between the neutral d.c. conductor 7 and earth. Any imbalance in the current in the positive and negative conductors 6, 8 is compensated by detecting the presence of current flowing in the neutral conductor 7. Power supplied to auxiliary circuits from the output of one of the inverters, e.g. 10a, of the wind turbine is measured, and any resulting imbalance between the current in the positive and negative conductors is compensated. In the event of an earth-leakage fault in the conductors connecting the a.c. outputs of the inverters to the grid, when isolated, isolation detection relays 25 are provided.
Abstract:
The invention relates to a method for controlling a wind turbine as virtual synchronous machine by determining the synchronous machine rotational speed rotational speed ωVSM and the synchronous machine angle θVSM. The virtual synchronous machine rotational speed ωVSM is determined based on a combination of a feedback of a damping power Pd, a power reference Pref for a desired power output of the wind turbine, a grid power Pgrid supplied by the wind turbine to a power grid and a chopper power Pchop dissipated by the chopper and an inertial integration model, the synchronous machine angle θVSM is determined based on an integration of the synchronous machine rotational speed ωVSM, and the damping power Pd is determined based on the virtual synchronous machine rotational speed ωVSM.
Abstract:
A power conversion system for a wind turbine generator, comprising a machine-side converter having an AC voltage input from a generator and a DC voltage output to a DC link, wherein the machine-side converter is a modular multi-level converter comprising one or more converter legs corresponding to a respective one or more electrical phases of the generator, each of the converter legs comprising a plurality of converter cells, the system further comprising: a converter control module which provides the machine-side converter with a gate signal, and an electrical frequency estimation module configured to estimate the mean electrical frequency of the generator; wherein the gate signal has at least one mean switching frequency corresponding to at least one electrical phase of the generator; wherein the converter control module is configured to modulate the mean switching frequency of the gate signal in dependence on the mean electrical frequency of the generator.
Abstract:
A method for controlling a wind turbine system including an electrical generator, a power converter system, a DC-link, and at least a grid-side breaker arrangement controllable between open and closed states, wherein the method comprises monitoring for the presence of a shutdown event and, in response to identifying the presence of a shutdown event, controlling the wind turbine into a production-ready state, comprising: i) controlling the grid-side breaker arrangement in the closed state; ii) disabling one or more drive signals to the power converter system; and iii) controlling the DC-link of the power converter system in a charged state. Advantageously, this approach reduces the frequency of use of the grid-side breaker arrangement which extends serviceable life considerably, and also allows the wind turbine system to be transitioned rapidly between an operating state and a production-ready state.
Abstract:
In a full-scale converter system both the grid-side inverter unit and the generator-side inverter unit have a series connection of parallel inverters and form a generator-side and grid-side voltage-center-point at a voltage level between those of the inverters connected in series. The voltage-center-points are electrically connected by a center-line conductor that has a cross- section between 30% and 70% of that of a positive or negative potential conductor. The converter system continues conversion operation in the event of a fault in an inverter of a first converter-string, with non-faulty inverters of the converter system, as the center-line conductor is dimensioned by said cross-section to carry a compensation current resulting from an unbalanced active power-output.
Abstract:
A method of monitoring a split wind-turbine-converter system with at least one generator-side converter and at least one grid-side converter arranged at distant locations, and a DC-link in the form of an elongated conductor arrangement with at least one positive and at least one negative conductor. The impedance of the DC-link conductor arrangement is determined by means of DC-voltage sensors. The voltages between the positive and the negative conductors are determined at the generator-side converter and at the grid-side converter, and the difference between the voltages is determined. The impedance of the DC-link conductor arrangement is determined by putting the determined voltage difference in relation to the DC current flowing through the DC-link conductor arrangement. If the impedance exceeds a given impedance threshold a fault state is recognized.