Abstract:
Aspects of the present invention relate to a method for controlling an amount of reactive current provided from a wind turbine generator to a power grid during an abnormal power grid event, said wind turbine generator comprising a doubly-fed induction generator having a rotor and a stator, and a power converter coupling the rotor to the power grid, the power converter comprising a grid-side inverter, wherein the method comprises the step of balancing the reactive current provided to the power grid between a reactive stator current and a reactive grid-side inverter current, wherein the reactive grid-side inverter current is controlled in accordance with a reactive current capacity of a grid breaker receiving the reactive current provided by the grid-side inverter. Aspects of the present invention also relate to a wind turbine generator being capable of performing the method.
Abstract:
A method is provided of protecting a wind turbine with a doubly-fed induction generator (DFIG) against a sub-synchronous resonance (SSR) event acting on the wind turbine. A plurality of power-output values or current-output values is measured over a given period of time that corresponds to a measurement cycle. It is determined whether power-output values or current-output-values measured in the at-least-one measurement cycle are indicative of an SSR-event critical for further operation of the wind turbine. The wind turbine is shut down if the measured power-output values or current-output values are indeed indicative of an SSR- event critical for operation of the wind turbine.
Abstract:
This disclosure proposes procedures and systems for discharging system capacitors and de-energizing power transmission systems having Modular Multilevel Converter (MMC) topologies by intelligent control of MMC cell components including configuration of bypass and insert switches using integrated DC choppers to effectively de-energize MMC cell capacitors and/or DC-link capacitors under operating conditions such as after a normal stop, for protection against over-voltages, dumping turbine energy, and under certain hardware fault conditions.
Abstract:
The present invention relates to a method for operating a doubly fed induction generator wind power facility during an OVRT event, said the wind turbine facility being adapted to inject active and/or reactive current into an associated grid, the method comprising the steps of determining the occurrence of an over voltage grid event, and maintaining a grid-side inverter of the doubly fed induction generator wind power facility fully operable during the over voltage ride though event so as to maintain a controllable active and/or reactive current capability during the over voltage grid event,
Abstract:
This invention concerns a method of controlling a power converter system 26 operating in an overmodulation region. The power converter system 26 comprises more than two current controllers 71, 73, 77, 79 a modulator 76 and a power converter 78, and the modulator 76 is configured to provide at least one modulated drive signal 87 to the power converter 78 based on voltage reference vector signals 82a, 82b, 82c, 82d from the more than two current controllers 71, 73, 77, 79. The method comprises determining the voltage reference vector signals 82a, 82b, 82c, 82d; determining compensated voltage reference vector signals 84a, 84b, 84c, 84d indicative of a fundamental frequency of a respective voltage reference vector signal 82a, 82b, 82c, 82d; and, determining the at least one modulated drive signal 87 based on a combination of the compensated voltage reference vector signals 84a, 84b, 84c, 84d.
Abstract:
The invention relates to a method for operating a wind turbine which comprises a power generator, a generator side converter, a grid side converter, a DC link electrically connected to an output of the generator side converter and an input of the grid side converter. The method comprises monitoring a wind turbine signal for detection of an operational condition which requires an increase of an output voltage of the grid side converter, upon detection of the operational condition, initiate an over-modulation mode wherein the grid side converter is operated with a modulation index in an over-modulation range, and upon the detection of the operational condition, initiate a DC-voltage adjustment mode wherein the a DC-voltage of the DC link is increased from a first voltage level towards a second voltage level.
Abstract:
A wind power plant system comprising: a plurality of wind turbine generators each having a corresponding generator controller, and a power plant controller for controlling the power generated by the wind power plant system;wherein at least some of the plurality of generator controllers are each configured to: generate a model that indicates the thermal capacity of one or more components of the wind turbine generator, determine power capacity data from the model, said data relating to: at least one reactive power supply level and a corresponding time limit for which that reactive power supply level may be maintained, and transmit to the power plant controller the determined power capacity data, wherein the power plant controller is operable to receive the power capacity data from the plurality of generator controllers and to transmit respective power references to the plurality of generator controllers to control the power generated by the wind power plant system.
Abstract:
A method of operating a power generating system for a wind turbine connected to an electrical grid, the power generating system comprising a power generator, a converter, a transformer and a tap changer, the method comprising; monitoring a signal for detecting 5 an over-voltage condition in the electrical grid which requires a reduction in the output voltage from the power generating system; initiating a convertor response mode configured to provide at least part of the required voltage reduction; and initiating a transformer response mode configured to provide at least part of the required voltage reduction; wherein the transformer response mode comprises operating the tap changer 10 to adjust the output voltage from the power generating system.
Abstract:
This invention concerns a method of controlling a power converter system 26 operating in an overmodulation region. The power converter system 26 comprises more than two current controllers 71, 73, 77, 79 a modulator 76 and a power converter 78, and the modulator 76 is configured to provide at least one modulated drive signal 87 to the power converter 78 based on voltage reference vector signals 82a, 82b, 82c, 82d from the more than two current controllers 71, 73, 77, 79. The method comprises determining the voltage reference vector signals 82a, 82b, 82c, 82d; determining compensated voltage reference vector signals 84a, 84b, 84c, 84d indicative of a fundamental frequency of a respective voltage reference vector signal 82a, 82b, 82c, 82d; and, determining the at least one modulated drive signal 87 based on a combination of the compensated voltage reference vector signals 84a, 84b, 84c, 84d.
Abstract:
This invention concerns a method of controlling a line side converter 46 of a power converter system 26 operating in an over-modulation range. The line side converter 46 comprises a controller 64 comprising a feedback control module 72 configured to output a feedback control signal 74 for modifying a drive signal 67 received by a modulator 68. The method comprises determining a modulation index within the over-modulation range; and, controlling the feedback control module 72 to adjust the feedback control signal 74 based on the modulation index.