Abstract:
A method for performing condition monitoring on a plurality of wind turbines of a wind farm comprises for each wind turbine, obtaining at least one vibration signal representing vibrations of one or more monitored components; generating a plurality of faulty frequency indexes on the basis of one or more of the obtained vibration signals, and in such a manner that variations in rotational speed of one or more rotating shafts of the wind turbine are filtered; comparing faulty frequency indexes originating from different wind turbines; and determining the condition of each of the monitored components based on the comparison.
Abstract:
Method of operating a wind power plant including the steps of: operating the wind power plant at an currentparameter schedule (P current (v)) performing a wind prediction of wind data (V w ) for a time frame (ΔT) extending to a future time T, determining a desired fatigue load level (F desιred ) of a wind power plant component at the future time T, and during operation of said wind power plant generating an updated parameter schedule (P desιred (v)) to provide the desired fatigue load level (F desired ) at time T if exposed to the predicted wind conditions (V w (t)) during said time frame (ΔT)
Abstract:
A method is provided of protecting a wind turbine with a doubly-fed induction generator (DFIG) against a sub-synchronous resonance (SSR) event acting on the wind turbine. A plurality of power-output values or current-output values is measured over a given period of time that corresponds to a measurement cycle. It is determined whether power-output values or current-output-values measured in the at-least-one measurement cycle are indicative of an SSR-event critical for further operation of the wind turbine. The wind turbine is shut down if the measured power-output values or current-output values are indeed indicative of an SSR-event critical for operation of the wind turbine.
Abstract:
The present invention relates to a method of controlling a wind turbine having at least one blade and a controller, including: detect location of foreign material adhered to the blade by sensors mounted on the blade and communicatively coupled to the controller; determine the resonance mode of the blade to be excited based on the location of the foreign material by the controller; and excite the blade to the resonance mode; wherein the resonance mode is one higher than the first order resonance mode. The present invention also relates to a wind turbine using the method.