Abstract:
The invention relates to wind turbines, particularly to controlling reactive power exchange between a power grid and a wind power plant. The wind power plant has a plurality of wind turbine generators each having a corresponding power converter with a converter controller. Further, the wind power plant has a power plant transformer with an on load tap changer coupled between the wind power plant and the power grid. The power plant controller is regulating the on load tap changer and is generating reactive component setpoints for the wind turbine generators, when determining a need for production of short-term reactive power due to a sudden change in reactive power measured at the point of common coupling.
Abstract:
A method is provided of protecting a wind turbine with a doubly-fed induction generator (DFIG) against a sub-synchronous resonance (SSR) event acting on the wind turbine. A plurality of power-output values or current-output values is measured over a given period of time that corresponds to a measurement cycle. It is determined whether power-output values or current-output-values measured in the at-least-one measurement cycle are indicative of an SSR-event critical for further operation of the wind turbine. The wind turbine is shut down if the measured power-output values or current-output values are indeed indicative of an SSR- event critical for operation of the wind turbine.
Abstract:
A method for operating a renewable energy power plant comprising a plurality of renewable energy generators, a plurality of power dissipation systems and a battery storage system is provided. The method comprises steps of: monitoring the statuses of the power dissipation systems; performing a ramped active power recovery operation following a voltage deviation, and controlling the battery storage system during the ramped active power recovery operation to absorb power generated by the renewable energy generators in dependence on the monitored statuses of the power dissipation systems.
Abstract:
A method is provided of controlling a doubly fed induction generator- (DFIG) wind turbine converter system if a sub-synchronous resonance event acts on the wind turbine. According to the method a sub-synchronous resonance event is detected. Thereupon, a switch from a non- SSR-control mode to a SSR-control mode is performed. At least one of the following activities is performed in the SSR-control mode, namely: (i) freezing rotor AC voltages in magnitude and phase, (ii) altering at least one rotor-current-controller gain (iii) altering at least one rotor-current-controller time constant, to dampen the effect of the SSR-event on the wind turbine.
Abstract:
A wind turbine generator is disclosed herein. In a described embodiment, the wind turbine generator comprises an electrical generator 101 configured to generate AC signals, a plurality of power converters 110,112,111 operated by a gating signal with each power converter configured to convert the AC signals from the electrical generator 101 into fixed frequency AC signals. The wind turbine generator further comprises a controller configured to enter a fault mode when a grid voltage falls outside an acceptable threshold, and during the fault mode the controller is configured to provide a reactive current reference dependant on a grid voltage distant from the wind turbine generator.A method of controlling a wind turbine generator is also disclosed.
Abstract:
A power plant control system for a first renewable energy power plant comprising one or more renewable energy generators. The power plant control system comprises receiving means for receiving a power delivery demand from a transmission grid operator; control means configured to control the one or more renewable energy generators of the first renewable energy power plant so as to supply power that targets the received power delivery demand; and communication means configured to transmit a request to one or more further renewable energy power plant control systems to request operation of one or more power compensation units associated with respective ones of the further renewable energy power plants. The embodiments of the invention are beneficial in that the power plant control system of the first renewable energy power plant has the functionality to manage the power delivery across multiple power plants, and therefore acts as an energy management system, able to active assets of other power plants so as to react quickly to any grid instabilities that may be detected. This provides a robust response to grid instabilities. The invention has particular utility to wind power plants, but also applies to other types of renewable energy power plants, for example photo-voltaic power plants, hydro-electric power plants and the like.
Abstract:
A method of controlling a wind turbine generator (1) comprising an electrical generator (20) and a power converter (22), the power converter (22) being configured to process electrical power produced by the electrical generator (20) to supply output power to an electrical grid (44) through a transmission line (46), the method comprising: determining a transmission line impedance value; calculating a reactive power reference based on the transmission line impedance value and an active power reference; and controlling the wind turbine generator (1) to adjust the output power based on the calculated reactive power reference.
Abstract:
In various embodiments of the present disclosure, there is provided a method for controlling a reactive current injection in a wind power plant during a grid fault. According to an embodiment, the method includes measuring an amount of reactive current to be provided by the wind power plant to the grid during the grid fault. The method further includes determining a difference between a given required reactive current contribution from the wind power plant and the amount of reactive current to be provided by the wind power plant to the grid during the grid fault. According to an embodiment, the method includes controlling a plurality of wind turbine generators in the wind power plant to generate additional reactive current according to a reactive current reference generated based on the difference. A corresponding wind power plant is further provided.
Abstract:
In various embodiments of the present disclosure, there is provided a method for increasing the reactive power capability of a wind power plant, in controlling a wind power plant. According to an embodiment, the method includes receiving a reactive power requirement from an electrical grid. The method further includes determining an active power generated by the wind power plant. According to an embodiment, the method includes checking if the reactive power requirement is satisfied by the wind power plant based on the active power generated by the wind power plant. The method further includes controlling the wind power plant to curtail the active power generated by the wind power plant by a curtailment amount when the reactive power requirement is not satisfied, and in response to a grid event.A corresponding wind power plant is further provided.
Abstract:
A method of operating a wind turbine plant is provided. Such a wind turbine plant comprises at least one transmission branch comprising a plurality of wind turbine generators and coupled to an electrical grid at a point of common coupling through at least one circuit breaker comprising a breaking capacity. The method comprises monitoring the electrical grid for a low voltage fault event; and if a low voltage fault event is detected: calculating a grid short circuit strength, determining a short circuit current limit if the grid short circuit strength requires an initial fault current contribution which exceeds the breaking capacity of the circuit breaker to be passed through the circuit breaker, determining a maximum fault current contribution based on the short circuit current limit and operating the wind turbine generators to provide to the electrical grid the maximum fault current contribution.