Abstract:
The present invention generally relates to a microwave-assisted pyrolysis system comprised of a microwave chamber body (102); a black carbon platform (104) disposed inside the microwave chamber body for irradiating microwave radiation and absorbing microwave energy; a quartz microwave reactor (106) placed on the black carbon platform for receiving chemical precursor(s) and applying microwave irradiation for absorption of microwave energy thereby heating the black carbon platform for microwave-assisted pyrolysis of the received chemical precursor(s); a cooling unit (108) employed for regulating and maintaining a user-defined temperature level upon detecting the temperature inside the microwave reactor using a temperature sensor (110), if the temperature exceeds the optimum level, wherein the optimum temperature is defined on the type of precursors undergoing pyrolysis; and wherein if the heating temperature is raised extremely high, the cooling unit inside the microwave machine gets activated to bring down the temperature to the user-defined level.
Abstract:
The present invention describes a process for quenching a hydrothermal, dilute acid hydrolysis reaction of a biomass feedstock, wherein degradation of an aqueous monomer and/or oligomer sugar mixture is slowed down or stopped by flash cooling of the aqueous monomer and/or oligomer sugar mixture, and wherein the flash cooling ensures that a fraction of dissolved and volatile degradation byproducts are removed by a forming vapor stream, and wherein a lignin component, if present, is solidified into a structure with good de-watering characteristics, allowing for subsequent removal of the lignin component by separation, said process resulting in a hydrolyzed solution of sugar monomers and/or oligomers.
Abstract:
The invention concerns a process for the continuous treatment of an emulsion and/or a micro-emulsion assisted by an “expanded liquid” for the production of micro- and/or nano-particles or micro- and/or nano-spheres containing one or more active ingredients. In particular, a liquid solvent expanded by compressed or supercritical CO2 is contacted with an O/W emulsion, or alternatively a W/O emulsion or multiple emulsions, formed by an external phase that is itself a liquid expanded by compressed CO2. The expanded liquid forms a solution with the dispersed phase of the emulsion and extracts it inducing the formation of the desired particles of the dissolved compounds.The process is carried out in a counter-current packed column wherein the expanded emulsion is fed from the top, while the expanded liquid is fed from the bottom. Thanks to the presence of the expanded liquid, any deposition of the solid particles produced on the packing elements is avoided, thus preventing any column blockage. A suspension of micro-structured particles of the desired product can be collected continuously at the bottom of the column.
Abstract:
The present invention describes a process for quenching a hydrothermal, dilute acid hydrolysis reaction of a biomass feedstock, wherein degradation of an aqueous monomer and/or oligomer sugar mixture is slowed down or stopped by flash cooling of the aqueous monomer and/or oligomer sugar mixture, and wherein the flash cooling ensures that a fraction of dissolved and volatile degradation byproducts are removed by a forming vapor stream, and wherein a lignin component, if present, is solidified into a structure with good de-watering characteristics, allowing for subsequent removal of the lignin component by separation, said process resulting in a hydrolyzed solution of sugar monomers and/or oligomers.
Abstract:
The invention concerns a process for the continuous treatment of an emulsion and/or a micro-emulsion assisted by an "expanded liquid' for the production of micro- and/or nano-particles or micro- and/or nano- spheres containing one or more active ingredients. In particular, a liquid solvent expanded by compressed or supercritical CO2 is contacted with an O/W emulsion, or alternatively a W/O emulsion or multiple emulsions, formed by an external phase that is itself a liquid expanded by compressed CO2. The expanded liquid forms a solution with the dispersed phase of the emulsion and extracts it inducing the formation of the desired particles of the dissolved compounds. The process is carried out in a counter-current packed column wherein the expanded emulsion is fed from the top, while the expanded liquid is fed from the bottom. Thanks to the presence of the expanded liquid, any deposition of the solid particles produced on the packing elements is avoided, thus preventing any column blockage. A suspension of micro-structured particles of the desired product can be collected continuously at the bottom of the column.
Abstract:
The invention concerns a process for the continuous treatment of an emulsion and/or a micro-emulsion assisted by an "expanded liquid' for the production of micro- and/or nano-particles or micro- and/or nano- spheres containing one or more active ingredients. In particular, a liquid solvent expanded by compressed or supercritical CO 2 is contacted with an O/W emulsion, or alternatively a W/O emulsion or multiple emulsions, formed by an external phase that is itself a liquid expanded by compressed CO 2 . The expanded liquid forms a solution with the dispersed phase of the emulsion and extracts it inducing the formation of the desired particles of the dissolved compounds. The process is carried out in a counter-current packed column wherein the expanded emulsion is fed from the top, while the expanded liquid is fed from the bottom. Thanks to the presence of the expanded liquid, any deposition of the solid particles produced on the packing elements is avoided, thus preventing any column blockage. A suspension of micro-structured particles of the desired product can be collected continuously at the bottom of the column.