Abstract:
A method for separation of isotopes includes vaporizing a sample having two or more isotopes of the same element. A stream of atoms is generated from the vaporized sample. One or more light waves are applied to the stream. The one or more light waves are tuned to prepare one or more specific isotopes in the flowing stream into a set of one or more magnetic states. A magnetic field is applied to the stream, deflecting atoms in the stream based on their magnetic states. Isotopes are collected based on their deflections (or lack of deflection).
Abstract:
This invention provides a process for separating particles. The process is particularly effective in separating particles such as isotopes of a chemical element. In carrying out the process, at least one particle stream that comprises the particles that are to be separated is contacted with a separate carrier gas stream to produce a mixed stream. A portion of the particles in the mixed stream is magnetically activated, and the magnetically activated particles are separated from non-magnetically activated particles the mixed stream.
Abstract:
A system and method in at least one embodiment for separating fluids including liquids and gases into subcomponents by passing the fluid through a vortex chamber into an expansion chamber and then through at least a portion of a waveform pattern present between at least two rotors and/or disks. In further embodiments, a system and method is offered for harnessing fields created by a system having rotating rotors and/or disks having waveform patterns on at least one side to produce current within a plurality of coils. In at least one embodiment, the waveform patterns include a plurality of hyperbolic waveforms axially aligned around a horizontal center of the system.
Abstract:
A system and method in at least one embodiment for separating fluids including liquids and gases into subcomponents by passing the fluid through a vortex chamber into an expansion chamber and then through at least a portion of a waveform pattern present between at least two rotors and/or disks. In further embodiments, a system and method is offered for harnessing fields created by a system having rotating rotors and/or disks having waveform patterns on at least one side to produce current within a plurality of coils. In at least one embodiment, the waveform patterns include a plurality of hyperbolic waveforms axially aligned around a horizontal center of the system.
Abstract:
[Problems] To provide a treatment method having excellent purification effect, in which impurities having high ionicity in a silica powder can be removed in a short time, a apparatus thereof, and a purified silica powder. [Means for Solving the Problems] A purification method of a silica powder comprises: making a silica powder into a fluid state; contacting a purified gas to the silica powder in the fluid state at high temperature; and thereby removing impurity components of the silica powder. In the method, the silica powder in the fluid state is positioned in a magnetic field region. Further, the silica powder is contacted with the purified gas, while applying voltage to the silica powder by an electric field generated by moving of the silica powder. Preferably, the silica powder in a fluid state is positioned in the magnetic region of 10 gausses or more, and contacted with the purification gas at a temperature of 1000°C or more.