Abstract:
In a method for vertical continuous casting of a steel band, a strand (11) of a parallelogram-like cross section is cast at first in a revolving chill-mold (2) and is thereafter transferred from said initial cross section with completely solidified longitudinal edges (10) and liquid core into a band (1) with plane-parallel cross section, this occurring in such a way that an already solidified shell (9) of the strand (11) which becomes increasingly thicker by cooling is increasingly compressed in the casting direction in a forming device (4) without upsetting deformation of the completely solidified longitudinal edges (10). In order to provide advantageous conditions it is proposed that after the compression into a band (1) the strand (11) with a still liquid core (16) is guided during the complete solidification of the core merely in a forming gap with a constant width corresponding to the thickness of the completely solidified longitudinal edges (10) and is calibrated in this process.
Abstract:
In a process for the continuous casting of steel, molten steel is vertically cast in mold means to form a strand having an elongate shape in cross-section and is caused to solidify as it flows through the mold means. To permit a thin strand to be efficiently produced, the strand is first cooled while a constant cross-section is maintained, that cooling is continued until a strong shell which has entirely been solidified at least in the narrow side walls has been formed, and the cooling and solidification of the strand are subsequently continued while the strand is progressively deformed and compacted to form a flat preliminary strip.
Abstract:
Process and ultra-compact plant for the production of steel strip including a mold that produces a very thin slab, with narrow sides between 25 and 32 mm thick, and with a bulge, characterized by a core in which the steel is still liquid. The slab is passed at a speed of between 6 and 16 m/min through a vertical prerolling device that reduces the thickness of the slab and closes its liquid core. The slab is then pre-rolled and, forming a loop, assumes a horizontal position where it is descaled and undergoes reduction in a compact group of milllstands, maintaining its temperature above the recrystallization point Ar3.
Abstract:
Process and ultracompact plant for continuous production of hot rolled steel strip comprising an ingot mould (15) which produces a very thin slab at a speed between 4 and 16 m/min, wherein the thickness of the oairrow sides is between 15 and 50 mm with a central swelling. Such slab has a core in which the steel is still liquid; it is run through a vertical pre-rolling device (16) which reduces the thickness of the slab, hence flattening it. The solidified slab can thus undergo a first light rolling process by means of a pinch roll (17) and, by forming a free curve, it moves to a horizontal position where it can undergo a second light rolling process by means of another pinch roll (22′), a heating process (if required) in an inductor (50), a superficial descaling process and a series of reductions in a rolling mill made up of at least three stands (20′, 20″, 20′″), thereby maintaining its temperature along the train above the Ar3 recrystallization point. Downstream of the rolling mill, there are a roller way (31) with cooling showers (32), flying shears (33) for cutting the strip to the required size, pinch rolls and at least two coilers (34) for forming coils of the hot rolled strip.
Abstract:
In a method for vertical continuous casting of a steel band, a strand (11) of a parallelogram-like cross section is cast at first in a revolving chill-mold (2) and is thereafter transferred from said initial cross section with completely solidified longitudinal edges (10) and liquid core into a band (1) with plane-parallel cross section, this occurring in such a way that an already solidified shell (9) of the strand (11) which becomes increasingly thicker by cooling is increasingly compressed in the casting direction in a forming device (4) without upsetting deformation of the completely solidified longitudinal edges (10). In order to provide advantageous conditions it is proposed that after the compression into a band (1) the strand (11) with a still liquid core (16) is guided during the complete solidification of the core merely in a forming gap with a constant width corresponding to the thickness of the completely solidified longitudinal edges (10) and is calibrated in this process.
Abstract:
A process and an ultracompact plant for the endless production of hot rolled steel strip comprising an ingot mold (15) that produces a very thin slab, having narrow sides with thickness in the range between 40 and 55 mm and a central swelling, at a speed in the range between 4 and 16 m/min. Such a slab, which displays a core in which the steel is still liquid, is passed through a vertical pre-rolling device (16) that reduces the thickness of the slab and flattens it. The solidified slab may thus be subjected to a first mild rolling by a conveyor (17) and, by forming a free curve, takes a horizontal position where it is subjected to a first surface descaling, a first rolling, a heating in an inductor (23), a second surface descaling and a series of reductions in a rolling mill (30) formed by at least two stands, by maintaining its temperature along the mill above the recrystallization point Ar3. Downstream of the rolling mill (30) there are provided a roller runway with cooling showers, a flying shear (33) for cutting to length the strip produced, pinch rolls and at least two spinning wheels (34) for the formation of coils of the hot rolled strip.
Abstract:
In order to produce a steel strip (1), a continuous casting and rolling installation comprises a liquid steel storage device (2), a liquid steel charging device (3), a vertically operating casting device (5) with a revolving mold (6), a reduction device (7) with a plurality of roll pairs (8), a diverting device (9) for diverting the cast steel strip (1) into a horizontal position, a horizontally operating rolling mill (10) and a winding device (11), which are controlled via individual technological control loops (2′ to 11′). In order to adjust the technological control loops (2′ to 11′) in an integrated manner, it also comprises a control system (12) which connects the installation parts (2 to 11) or components with regard to control, operates on the basis of mathematical models (17), and coordinates the individual installation parts (2 to 11) with regard to the interaction thereof, while taking into consideration the effects of the control steps of an installation part (2 to 11) upon installation parts (2 to 11) following in the direction of mass flow. The control system (12) contains a material model (17), by means of which a thermal behavior of the steel or steel strip (1) from the steel storage device (2) to the winding device (11) can be modeled using path tracking. The technological control loops (2′ to 11′) are controlled at the correct times according to the modeled thermal behavior of the steel or steel strip (1).