Abstract:
It is an object of the present invention to provide a method which can easily and selectively modify specific sites on indentations or protrusions of indentation/protrusion structures fabricated by nanoimprinting. Pressing a mold having indentation/protrusion structures onto a polymer substrate comprising at least two layers of different chemical composition exposes the second layer, which has been covered by the outermost layer, in pillars formed as a result of the pressing. Site-specific chemical modification of the pillars can be achieved by formulating a desired chemical composition for the second layer beforehand, or by chemical modification of the exposed second layer cross-sections in the pillars.
Abstract:
A method for imparting a pattern to a flowable resist material on a substrate entails providing a resist layer so thin that during a stamp wedging process, the resist never completely fills the space between the substrate and the bottom surface of a stamp between wedge protrusions, leaving gap everywhere therebetween. A gap remains between the resist and the extended surface of the stamp. If the resist layer as deposited is somewhat thicker than the targeted amount, it will simply result in a smaller gap between resist and tool. The presence of a continuous gap assures that no pressure builds under the stamp. Thus, the force on the protrusions i determined only by the pressure above the stamp and is well controlled, resulting in well-controlled hole sizes. The gap prevents resist from being pumped entirely out of any one region, and thus prevents any regions from being uncovered of resist. The stamp can be pulsed in its contact with the substrate, repeatedly deforming the indenting protrusions. Several pulses clears away any scum layer better than does a single press, as measured by an etch test comparison of the degree to which a normal etch for a normal duration etches away substrate material. A method for imparting a pattern to a flowable resist material on a substrate entails providing a resist layer so thin that during a stamp wedging process, the resist never completely fills the space between the substrate and the bottom surface of a stamp between wedge protrusions, leaving a gap everywhere therebetween. A gap remains between the resist and the extended surface of the stamp.
Abstract:
A method of forming a stamped feature (P) on a substrate (S) includes: applying a plurality of stamping tool segments (32, 40a, 40b, 40c, 50, 60, 70, 80, 92) to at least one surface of the substrate. An arrangement (30, 90) for forming a stamped feature (P) on a substrate (S) includes a plurality of stamping tool segments (32, 40a, 40b, 40c, 50, 60, 70, 80, 92) that actuatable individually, in concert in groups of more than one, or combinations thereof.
Abstract:
The subject matter described herein relates to methods and systems for fast imprinting of nanometer scale features in a workpiece. According to one aspect, a system for producing nanometer scale features in a workpiece is disclosed. The system includes a die having a surface with at least one nanometer scale feature located thereon. A first actuator moves the die with respect to the workpiece such that the at least one nanometer scale feature impacts the workpiece and imprints a corresponding at least one nanometer scale feature in the workpiece.
Abstract:
Provided is a curable resin composition for a dry-etching resist, the curable resin composition containing a polymer (A) having, in a side chain, a particular structure including an aromatic group having a vinyl group. The polymer (A) includes 80 to 100 wt % of the particular structure. In addition, provided are a dry-etching resist mask obtained by curing the curable composition for a dry-etching resist, and the dry-etching resist mask having a pattern formed by a nanoimprint method.
Abstract:
A pattern forming method according to an embodiment includes: forming a pattern film on a first substrate, the pattern film having a concave-convex pattern, the pattern film being made of a material containing a first to-be-imprinted agent; forming a material film on a second substrate, the material film containing a second to-be-imprinted agent having a higher etching rate than an etching rate of the first to-be-imprinted agent; transferring the concave-convex pattern of the pattern film onto the material film by applying pressure between the first substrate and the second substrate, with the pattern film being positioned to face the material film, and by curing the second to-be-imprinted agent; detaching the first substrate from the pattern film; and removing the material film by etching, to leave the pattern film on the second substrate.
Abstract:
By forming metallization structures on the basis of an imprint technique, in which via openings and trenches may be commonly formed, a significant reduction of process complexity may be achieved due to the omission of at least one further alignment process as required in conventional process techniques. Furthermore, the flexibility and efficiency of imprint lithography may be increased by providing appropriately designed imprint molds in order to provide via openings and trenches exhibiting an increased fill capability, thereby also improving the performance of the finally obtained metallization structures with respect to reliability, resistance against electromigration and the like.
Abstract:
A method for patterning a surface includes providing a first layer of mechanically deformable material having a first surface. A second layer of mechanically deformable material is placed on the first surface. At least a portion of the second layer is controllably displaced to form at least one patterned void through the second layer.
Abstract:
The present invention provides a method of fabricating a biosensor. The method includes providing a substrate which has a surface coating. The surface coating is deformable and the substrate includes a layered structure which has at least two electrically conductive layers separated by at least one electrically insulating layer. The method also includes imprinting a structure into the surface coating. Further, the method includes etching at least a region of the imprinted structure and the substrate to remove at least a portion of the structure and the substrate. The structure is shaped so that the etching forms at least a portion of the biosensor in the substrate and exposes at least a portion of each electrically conductive layer to form electrodes of the biosensor.