Abstract:
A workpiece is transported using a porous belt, which belt delivers a workpiece to a chuck, upon which the workpiece is held by vacuum. The belt can be porous PTFE. A flexible stamp is preheated, before it is applied to a workpiece, by drawing the stamp toward a heated plate, for instance by vacuum.
Abstract:
A semiconductor wafer forms on a mold containing a dopant. The dopant dopes a melt region adjacent the mold. There, dopant concentration is higher than in the melt bulk. A wafer starts solidifying. Dopant diffuses poorly in solid semiconductor. After a wafer starts solidifying, dopant cannot enter the melt. Afterwards, the concentration of dopant in the melt adjacent the wafer surface is less than what was present where the wafer began to form. New wafer regions grow from a melt region whose dopant concentration lessens over time. This establishes a dopant gradient in the wafer, with higher concentration adjacent the mold. The gradient can be tailored. A gradient gives rise to a field that can function as a drift or back surface field. Solar collectors can have open grid conductors and better optical reflectors on the back surface, made possible by the intrinsic back surface field.
Abstract:
A main crucible of molten semiconductor is replenished from a supply crucible maintained such that there are always two phases of solid and liquid semiconductor within the supply crucible. Heat added to melt the solid material results in the solid material changing phase to liquid, but will not result in any significant elevation in temperature of the liquid within the supply crucible. The temperature excursions are advantageously small, being less than that which would cause problems with the formed product. The solid product material acts as a sort of temperature buffer, to maintain the supply liquid temperature automatically and passively at or very near to the phase transition temperature. For silicon, excursions are kept to less than 90°C, and even as small as 50°C. The methods also are useful with germanium. Prior art silicon methods that entirely melt the semiconductor experience excursions exceeding 100°C.
Abstract:
A method for imparting a pattern to a flowable resist material on a substrate entails providing a resist layer so thin that during a stamp wedging process, the resist never completely fills the space between the substrate and the bottom surface of a stamp between wedge protrusions, leaving gap everywhere therebetween. A gap remains between the resist and the extended surface of the stamp. If the resist layer as deposited is somewhat thicker than the targeted amount, it will simply result in a smaller gap between resist and tool. The presence of a continuous gap assures that no pressure builds under the stamp. Thus, the force on the protrusions i determined only by the pressure above the stamp and is well controlled, resulting in well-controlled hole sizes. The gap prevents resist from being pumped entirely out of any one region, and thus prevents any regions from being uncovered of resist. The stamp can be pulsed in its contact with the substrate, repeatedly deforming the indenting protrusions. Several pulses clears away any scum layer better than does a single press, as measured by an etch test comparison of the degree to which a normal etch for a normal duration etches away substrate material. A method for imparting a pattern to a flowable resist material on a substrate entails providing a resist layer so thin that during a stamp wedging process, the resist never completely fills the space between the substrate and the bottom surface of a stamp between wedge protrusions, leaving a gap everywhere therebetween. A gap remains between the resist and the extended surface of the stamp.
Abstract:
A method includes etching silicon using a mixture of nitric acid and hydrofluoric acid in which less than 6 mols of hydrofluoric acid is used to etch one mol of silicon. The etching may be conducted at an elevated temperature, such as a temperature of at least 70 degrees Celsius.
Abstract:
Processes increase light absorption into silicon wafers by selectively changing the reflective properties of the bottom portions of light trapping cavity features. Modification of light trapping features includes: deepening the bottom portion, increasing the curvature of the bottom portion, and roughening the bottom portion, all accomplished through etching. Modification may also be by the selective addition of material at the bottom of cavity features. Different types of features in the same wafers may be treated differently. Some may receive a treatment that improves light trapping while another is deliberately excluded from such treatment. Some may be deepened, some roughened, some both. No alignment is needed to achieve this selectively. The masking step achieves self-alignment to previously created light trapping features due to softening and deformation in place.
Abstract:
The present inventions relate to the formation of a thin polymer film on a substrate. Apparatus is described for transforming a solid polymer resist into an aerosol of small particles, electrostatically charging and depositing the particles onto a substrate, and flowing the particles into a continuous layer. Apparatus is further described for transforming solid resist into an aerosol of small particles by heating the resist to form a low viscosity liquid such as is compatible with nebulization and applying the techniques of jet or impact nebulization and aerosol particle sizing to form the aerosol. A method is further described of using ionized gas to confer charge onto the aerosol particles and using a progression of charging devices establish an electric field directing the flow of charged particles to the substrate. The progression of charging devices and associated apparatus results in high collection efficiency for the aerosol particles.
Abstract:
A workpiece is transported using a porous belt, which belt delivers a workpiece to a chuck, upon which the workpiece is held by vacuum. The belt can be porous PTFE. A flexible stamp is preheated, before it is applied to a workpiece, by drawing the stamp toward a heated plate, for instance by vacuum.
Abstract:
A string for growing ribbon crystal has a core and an outer cover, the cover composed of at least two different materials, chosen with the material of the core in amount and kind such that the CTE of the covered core matches in net, that of the silicon ribbon. The cover material is also chosen so that silicon readily wets significantly around the string, subtending an angle of at least about 55 degrees, up to a fully wetted string, resulting in a relatively thick strong ribbon adjacent the string, closer in thickness to the diameter of the sting. This prevents a thin, fragile ribbon near the string. For silicon ribbon, a cover may be an interspersed composition that is predominantly of silica, with some SiC. The core may also be composed of silica and SiC, in different proportions, and different geometry, or may be a single material, such as Carbon.
Abstract:
Materials that contain liquid are deposited into grooves upon a surface of a work piece, such as a silicon wafer to form a solar cell. Liquid can be dispensed into work piece paths, such as grooves under pressure through a dispensing tube. The tube mechanically tracks in the groove. The tube may be small and rest at the groove bottom, with the sidewalls providing restraint. Or it may be larger and ride on the top edges of the groove. A tracking feature, such as a protrusion, Non-circular cross-sections, molded-on protrusions and lobes also enhance tracking. The tube may be forced against the groove by spring or magnetic loading. Alignment guides, such as lead-in features may guide the tube into the groove. Restoring features along the path may restore a wayward tube. Many tubes may be used. Many work pieces can be treated in a line or on a drum.