Abstract:
[Object] To provide a piezoelectric microblower that can be made compact while still attaining good blower characteristics. [Solution] In part of a blower chamber 4 corresponding to a central portion of a vibrating plate 50, a resonance space 34 is formed by providing a partition 33 around an opening 31 and the size of the resonance space 34 is set such that the driving frequency of the vibrating plate 50 and the Helmholtz resonant frequency of the resonance space 34 correspond to each other. A gap δ is formed between the partition 33 and the vibrating plate 50 so that there is no contact therebetween when the vibrating plate is displaced. An increase in the flow rate can be attained by utilizing resonance of air.
Abstract:
A rod-pump control device is disclosed. The rod-pump control device uses AMP (current) measurements for electric units, fuel or air usage for gas units, and can use pressure for either unit. The AMP/fuel/air sensors work as the primary trigger to indicate a pump-off condition on an oil and gas well. These sensors can be used as stand-alone triggers or in conjunction with other sensors to more accurately monitor pump efficiency. When the pump-controller starts to indicate an inefficient pump condition, it will turn the pump off by removing power from the electric motor. For gas powered units, the controller will remove power to disengage an electric clutch or send a signal to an engine controller to stop. An adjustable algorithm will use percentage change of off time, dependent on actual run time compared to a user definable target time to keep the pump operating at peak efficiency.
Abstract:
According to some embodiments, system and methods are provided, comprising providing a dual-mode model for a reciprocating compressor, wherein the model includes a measurement mode and a tuning mode; receiving one or more inputs to the model from an operating reciprocating compressor; and in response to receipt of the one or more inputs, executing the model in at least one of the measurement mode and the tuning mode, wherein: in a measurement mode, execution of the model further comprises calculating an actual flow rate of gas in the compressor based on the one or more inputs; and in a tuning mode, execution of the model further comprises calculating one of an unloader setting and a speed set point of a physical element of the compressor for a given flow rate of gas. Numerous other aspects are provided.
Abstract:
A control system for a machine having a cylinder and an accessory is disclosed. The control system may include a pump configured to provide fluid to the cylinder and the accessory, and a controller operatively connected to the pump. The controller may be configured to operate the pump to provide a primary flow to the cylinder at up to a predetermined maximum level for the cylinder. The predetermined maximum level for the cylinder may be less than a maximum flow capability of the pump. The controller may also be configured to operate the pump to provide a secondary flow to the accessory utilizing a remaining fluid.
Abstract:
A two (or more) piston pump system (10) is provided with both pumps (12) being crank (14) driven. The system does not have a mechanical camshaft, but a software algorithm, which acts like one in controller (20). The algorithm will LEARN and create a unique speed profile, which will mimic the mechanical camshaft. For practical purposes the speed profile of output gear is called Cam profile with software acting as an imaginary camshaft. The algorithm utilizes Crank Angle Estimation, Learn Curve Generation, Smoothing and Advance Timing Calculation.
Abstract:
A rod-pump control device is disclosed. The claimed rod-pump control device uses fuel or air usage for gas units, and can use pressure. The sensors work as the primary trigger to indicate a pump-off condition on an oil and gas well. These sensors can be used as stand-alone triggers or in conjunction with other sensors to more accurately monitor pump efficiency. When the pump-controller starts to indicate an inefficient pump condition, it will remove power to disengage an electric clutch or send a signal to an engine controller to stop. An adjustable algorithm will use percentage change of off time, dependent on actual run time compared to a user definable target time to keep the pump operating at peak efficiency.
Abstract:
A hydraulic fan drive for a cooling system of an internal combustion engine, in particular a diesel engine of a mobile working machine or a construction machine, is configured to be switched off for a short time or by way of a transition in dependence on a load of the internal combustion engine. A shut-off valve, which is arranged in a working line connecting a variable-displacement pump to a fan motor, is configured to switch off the fan drive. The fan drive is further configured to be switched off by rotational speed monitoring of the internal combustion engine.
Abstract:
A fluid infusion pump includes a disposable cassette having an inlet, an outlet, and a fluid chamber between the inlet and the outlet. There is a fixed wall of the fluid chamber and a movable wall of the fluid chamber. A pump body receives the cassette in a fixed operating relationship such that an actuator in the pump body is activatable for reciprocal advancement and retraction with respect to the cassette and is adapted to confront the movable diaphragm when the cassette is received in the pump body. There is a detachable coupling between the actuator mounted in the pump body and the movable wall so that fluid is expelled from the fluid chamber on advancement of the actuator and positively drawn into the fluid chamber upon retraction of the actuator.
Abstract:
A fluid infusion pump includes a disposable cassette having an inlet, an outlet, and a fluid chamber between the inlet and the outlet. There is a fixed wall of the fluid chamber and a movable wall of the fluid chamber. A pump body receives the cassette in a fixed operating relationship such that an actuator in the pump body is activatable for reciprocal advancement and retraction with respect to the cassette and is adapted to confront the movable diaphragm when the cassette is received in the pump body. There is a detachable coupling between the actuator mounted in the pump body and the movable wall so that fluid is expelled from the fluid chamber on advancement of the actuator and positively drawn into the fluid chamber upon retraction of the actuator.