Abstract:
A pulsation attenuator for a fluidic system with a fluidic pump. The pulsation attenuator includes a fluidic channel, a first fluidic device adapted to attenuate pulsations with a shallow rolloff slope, and a second fluidic device adapted to attenuate pulsations with a shallow rolloff slope. The first fluidic device and the second fluidic device are connected to the fluidic channel such that they cooperatively attenuate pulsations with a steep rolloff slope. Preferably, the first fluidic device includes a first fluidic resistor and a first fluidic capacitor, and the second fluidic device includes a second fluidic resistor and a second fluidic capacitor. Preferably, the pulsation attenuator is arranged, similar a second-order low-pass filter, in the following order: (l) first fluidic resistor, (2) first fluidic capacitor, (3) second fluidic resistor, and (4) second fluidic capacitor.
Abstract:
For a hydraulically actuated device a hydraulic power cylinder (30) with an actuator (14) slidably received for reciprocation within the cylinder (30) and a piston (68) slidably received for reciprocation within a sleeve (54) of the actuator (14) and defining a gas chamber(66) on one side of the piston (68) and a hydraulic fluid chamber (48) on the other side of the piston (68) so that the maximum pressure in the hydraulic fluid chamber (48) is limited as a function of the force of compressed gas in the gas chamber (66) acting on the piston (68). In this way, the maximum system pressure is a function of and substantially corresponds to the pressure of the compressed gas within the gas chamber (66) and acting on the piston (68). Desirably, the pressure of the compressed gas in the gas chamber (66) can be readily changed to change the maximum hydraulic fluid pressure.
Abstract:
A portable self contained hydroelectric generator requires a reservoir of liquid to operate. This invention pertains to a self contained reservoir which uses earth's gravitational force to pressurize the contained liquid. This is achieved by placing a downward force using a weighted platform situated above the liquid. This in turn will provide an increased liquid flow to be used for hydroelectric power generation when said liquid is passed through a turbine. The flowing liquid will be collected in a second reservoir for reuse.
Abstract:
An energy storage device a first member and a second member that is slidably engaged with the first member. There are at least two seals that slidably seal the first member to the second member and define a cavity therebetween that varies in volume with relative movement between the first member and the second member. The first member is biased toward the second member in a direction that resisted increases in volume of the cavity.
Abstract:
A pulsation attenuator for a fluidic system with a fluidic pump. The pulsation attenuator includes a fluidic channel, a first fluidic device adapted to attenuate pulsations with a shallow rolloff slope, and a second fluidic device adapted to attenuate pulsations with a shallow rolloff slope. The first fluidic device and the second fluidic device are connected to the fluidic channel such that they cooperatively attenuate pulsations with a steep rolloff slope. Preferably, the first fluidic device includes a first fluidic resistor and a first fluidic capacitor, and the second fluidic device includes a second fluidic resistor and a second fluidic capacitor. Preferably, the pulsation attenuator is arranged, similar a second-order low-pass filter, in the following order: (1) first fluidic resistor, (2) first fluidic capacitor, (3) second fluidic resistor, and (4) second fluidic capacitor.
Abstract:
For a hydraulically actuated device a hydraulic power cylinder with an actuator slidably received for reciprocation within the cylinder and a piston slidably received for reciprocation within a sleeve of the actuator and defining a gas chamber on one side of the piston and a hydraulic fluid chamber on the other side of the piston so that the maximum pressure in the hydraulic fluid chamber is limited as a function of the force of compressed gas in the gas chamber acting on the piston. In this way, the maximum system pressure is a function of and substantially corresponds to the pressure of the compressed gas within the gas chamber and acting on the piston. Desirably, the pressure of the compressed gas in the gas chamber can be readily changed to change the maximum hydraulic fluid pressure.
Abstract:
A rod is inserted in a first cylinder. A first oil chamber is defined by the inner surface of the first cylinder. The rod can be reciprocated with a first stroke. A second cylinder is coupled to the first cylinder by a connecting member. A metal bellows is housed in the second cylinder. A gas chamber is defined by the inner surface of the bellows. A second oil chamber is defined by the outer surface of the bellows and the inner surface of the second cylinder. The bellows contracts with a second stroke corresponding to the first stroke of the rod. The first and second oil chambers communicate with each other via an oil path formed in the connecting member. A valve seat is arranged on an end wall of the second cylinder. A valve body is fixed to the bellows so as to oppose the valve seat. If the bellows expands farther than the second stroke when a gas is supplied into the gas chamber, the valve body is brought into contact with the valve seat. When the valve body and the valve seat are brought into contact with each other, the oil is entrapped in a gap between the inner surface of the second cylinder and the outer surface of the bellows body.