Abstract:
An apparatus for measuring an optical component (160, 170, 190) of the apparatus, the apparatus comprising a radiation source (130) configured to form a measuring beam in a measuring channel (140), wherein the measured optical component configured to be in a first position outside the measuring channel and in a second position in the measuring channel; a first detector (110) configured to receive beams in the measuring channel; a second detector (150) configured to receive beams in the measuring channel; at least one processor; and at least one memory including computer program code. The at least one memory and the computer program code are configured to, with the at least one processor, cause the apparatus at least to select at least one of the first detector and the second detector to receive beams in the measuring channel, the measuring channel (140) being integrated to a photometer or a fluorescence channel of the apparatus; receive a first beam, using the selected detector, in the measuring channel, wherein the measured optical component is in the first position; receive a second beam, using the selected detector, in the measuring channel, wherein the measured optical component is in the second position; and determine the characteristics of the optical component based on the first beam and the second beam.
Abstract:
An apparatus for measuring an optical component (160, 170, 190) of the apparatus, the apparatus comprising a radiation source (130) configured to form a measuring beam in a measuring channel (140), wherein the measured optical component configured to be in a first position outside the measuring channel and in a second position in the measuring channel; a first detector (110) configured to receive beams in the measuring channel; a second detector (150) configured to receive beams in the measuring channel; at least one processor; and at least one memory including computer program code. The at least one memory and the computer program code are configured to, with the at least one processor, cause the apparatus at least to select at least one of the first detector and the second detector to receive beams in the measuring channel, the measuring channel (140) being integrated to a photometer or a fluorescence channel of the apparatus; receive a first beam, using the selected detector, in the measuring channel, wherein the measured optical component is in the first position; receive a second beam, using the selected detector, in the measuring channel, wherein the measured optical component is in the second position; and determine the characteristics of the optical component based on the first beam and the second beam.
Abstract:
Electronic devices may be provided with light sensors. Light sensors may be proximity sensors or ambient light sensors. Proximity sensors may include a light-emitting component and a light-sensitive component. The electronic device may include an enclosure formed from housing structures and some or all of a display for the device. The enclosure may include openings such as openings formed from clusters of smaller openings. Each light sensor may receive light through one of the clusters of openings. The light sensor may receive the light directly through the openings or may receive light that passes through the openings and is guided to the light sensor by light guiding structures. The light guiding structures may include fiber optic structures or light-reflecting structures. Fiber optic structures may fill or partially fill the openings. Light reflecting structures may be machined cavities in an internal support structure.
Abstract:
An apparatus for measuring light properties includes a housing defining a light input port; as well as a first light detector; a second light detector; and a coupling element. The first light detector is a single channel light detector or a multiple channel light detector. The second light detector is a multiple channel light detector. The coupling element is configured and arranged to selectively couple light incident from the light input port to one of the first light detector and the second light detector. As an alternative, a beam splitting element can be used instead of the coupling element. The beam splitting element receives light from the light input port and then splits the light and delivers a portion of the light to the first light detector and a portion of the light to the second light detector.
Abstract:
A calibration system for a detector includes a base member, a plurality of radiation sources fixedly attached to the base member, and a positioning mechanism attached to the base member. Each radiation source is maintained at a different temperature and is configured to emit electromagnetic radiation. The positioning mechanism includes a movable member having a single degree of freedom with respect to the base member, and a plurality of optical elements arranged on the movable member. Each optical element corresponds to one of the radiation sources and each optical element is configured to at least be movable between a calibration position and a non-calibration position. When the optical element is in the calibration position, the optical element is configured to receive the electromagnetic radiation from its corresponding radiation source and to reflect the electromagnetic radiation to a detector.
Abstract:
The disclosure is directed to a system and method for determining at least one characteristic of an illumination beam emanating from an illumination source. A substrate having a plurality of apertures may be actuated through an illumination beam so that apertures at different spatial offsets are scanned through the illumination beam at one or more levels of focus. Portions of illumination directed through scanned apertures may be received by at least one detector. At least one characteristic of the illumination beam may be extracted from data points associated with intensity levels associated with detected portions of illumination. Furthermore, multiple determinations of a beam characteristic made over a period of time may be utilized to calibrate the illumination source.
Abstract:
A high-speed optical measurement apparatus includes an objective lens unit, an optical path unit, a control circuit unit, a measurement sensor, an eyepiece unit, and a measurement sensor connection. The objective lens unit adjusts the magnitude of the overall light of the individual locations of the object or the set of multiple objects, and allows the light to make its entrance. The optical path unit changes the path of the incident light. The control circuit unit outputs a control signal which is used to change a direction of the light by controlling the optical path unit. The measurement sensor measures the incident light. The eyepiece unit conforms the light to the size and location of the measurement sensor. The measurement sensor connection fastens the measurement sensor so that the light incoming through the eyepiece unit is aligned with the measurement sensor.
Abstract:
A radiance source includes a housing having an interior wall, wherein at least a spherical portion of the interior wall of the housing is spherical, an interior volume, and an exit port. A light source is disposed within the interior volume of the housing. A calibration structure blocks and reflects a light ray that would otherwise travel directly from the light source to the exit port without reflecting from the interior wall. The calibration structure has a calibration body having a curved back surface facing the light source and a curved front surface facing the exit port. There is an optically diffuse, lambertian reflecting surface on at least the spherical portion of the interior wall of the housing, the back surface of the calibration body, and the front surface of the calibration body.