Abstract:
A steak tube has a container 2 with an entrance plate 2a and an output plate 2b, a photocathode 7 disposed in the container 2 and configured to emit electrons according to light to be measured, the light having been incident through the entrance plate 2a, and a sweep electrode 10 disposed in the container 2, having a pair of deflection plates 11, 12 for generating an electric field and a connection lead 13 connected to each deflection plate 11, 12, and configured to sweep the electrons in a sweep direction along the output plate 2b. An opposing of edges 11a, 11b of the deflection plate 11 in a direction of the output plate 2b are formed so as to extend in a direction from the entrance plate 2a to the output plate 2b, the connection lead 13 has a first connection portion 13a electrically connected to the deflection plate 11, and the first connection portion 13a is connected to the opposing of edges 11a, 11b.
Abstract:
The present invention relates to a method and apparatus for monitoring characteristics of a pharmaceutical composition during preparation thereof by in the process vessel (1) of a fluidized bed apparatus, wherein a measuring device (11, 11') performs a spectometric measurement on the pharmaceutical composition in a wetting zone (B) into which a processing fluid is injected. The method also comprises the generic use of an optical probe device in spectrometric measurements, the probe device being capable of transmitting a two-dimensional image of radiation emitted from a monitoring area in the process vessel (1).
Abstract:
A steak tube has a container with an entrance plate and an output plate, a photocathode disposed in the container and configured to emit electrons according to light to be measured, the light having been incident through the entrance plate, and a sweep electrode disposed in the container, having a pair of deflection plates for generating an electric field and a connection lead connected to each deflection plate, and configured to sweep the electrons in a sweep direction along the output plate. An opposing of edges of the deflection plate in a direction of the output plate are formed so as to extend in a direction from the entrance plate to the output plate, the connection lead has a first connection portion electrically connected to the deflection plate, and the first connection portion is connected to the opposing of edges.
Abstract:
A steak tube 1 has a container 2 with an entrance plate 2a and an output plate 2b; a photocathode 7 disposed in the container 2 and configured to emit electrons according to light to be measured, the light having been incident through the entrance plate 2a; a mesh electrode 3, a first focusing electrode 4, and an aperture electrode 5 forming an axially symmetric electron lens for focusing the electrons emitted from the photocathode 7, toward the output plate 2b; a sweep electrode 6 disposed in the container 2 and configured to sweep the electrons focused by the axially symmetric electron lens, in a sweep direction along the output plate 2b; and a second focusing electrode 9 disposed between the entrance plate 2a and the output plated 2b and forming a one-dimensional electron lens for focusing the electrons in the sweep direction.
Abstract:
A photon-counting type streak camera device measures by an integration operation the probability distribution of production timing of phenomenon light such as fluorescence light which a specimen produces upon reception of repeatedly generated pulse exciting light. A phenomenon streak camera system time-measures the phenomenon light, and a reference streak camera system time-measures reference light being synchronous with the exciting light. An arithmetic unit calculates the difference between outputs of the phenomenon and reference streak camera systems, so that the streak camera device can be prevented from being effected by a jitter or drift caused by a power change of a pulse light source.
Abstract:
Disclosed herein are systems and methods of phase-sensitive compressed ultrafast photography (pCUP). In some embodiments, a pCUP system comprises: a dark-field imaging system, and a compressed ultrafast photography (CUP system). The dark-field imaging system may comprise a laser source configured to illuminate the subject with a laser pulse; and a beam block configured to pass laser light scattered by the subject as a first series of phase images and block laser light not scattered by the subject. The CUP system may comprise: a spatial encoding module configured to receive the first series of phase images and to produce a second series of spatially encoded phase images; and a streak camera configured to receive the second series of spatially encoded phase images, to deflect each spatially encoded phase image by a temporal deflection distance, and to integrate the deflected phase images into a single raw CUP image.
Abstract:
Provided is a correction device including: a photon number counting unit that counts a photon number on the basis of an output signal output from a light receiving unit; a correction value acquiring unit that acquires a correction value corresponding to the photon number; and a correction unit that performs correction based on the correction value.
Abstract:
A steak tube 1 has a container 2 with an entrance plate 2a and an output plate 2b; a photocathode 7 disposed in the container 2 and configured to emit electrons according to light to be measured, the light having been incident through the entrance plate 2a; a mesh electrode 3, a first focusing electrode 4, and an aperture electrode 5 forming an axially symmetric electron lens for focusing the electrons emitted from the photocathode 7, toward the output plate 2b; a sweep electrode 6 disposed in the container 2 and configured to sweep the electrons focused by the axially symmetric electron lens, in a sweep direction along the output plate 2b; and a second focusing electrode 9 disposed between the entrance plate 2a and the output plated 2b and forming a one-dimensional electron lens for focusing the electrons in the sweep direction.
Abstract:
A wavelength of light emitted from a semiconductor laser is shifted to a shorter wavelength with wavelength converting means and the resulting light of a shorter wavelength is applied to a sample. Upon exposure to the light of the shorter wavelength, the sample emits light of interest and its waveform is measured with measuring means. Fundamental wavelength laser light which passes through the waveform converting means is outputted therefrom in synchronism with the light of a shorter wavelength and detected by a first photodetector. The waveform of the light of interest can be measured correctly on the basis of an output signal from the first photodetector.