Abstract:
This invention relates to an optical absorptiometer which is characterized by a light source unit of a broad wavelength having a source of constant energy which is collimated into two light beams, one of which is transmitted through the liquid to be measured, and another beam which is transmitted through a conductor and acts as a reference beam, and a detector unit which contains two photocells, one photocell for measuring the beam transmitted through the liquid to be measured, and another photocell which measures the reference beam, a position in the absorptiometer for optically placing the liquid to be measured between the source unit and the detector unit, and means for measuring the energy difference between the light beams of the measured liquid and the reference beams in terms of absorbance, and means for converting this result to an electrical signal. In the preferred embodiment, the constant energy in the light source is controlled by feedback circuitry; the reference beam is transported by a fiber optic cable to the reference photocell of the detector unit; water condensation on the optical and viewing windows is prevented by means of dry air flow; the electrical signal is displayed and/or relayed to control an operation; and the reference beam is a segment of the original light beam from the source.
Abstract:
An optical system for sensing an environmental parameter, comprising: an optical pulse generator for generating an excitation pulse; a pulse splitter for splitting the excitation pulse into a sensing pulse and a reference pulse; a sensing arm for receiving the sensing pulse, the sensing arm comprising an emission sensor for sensing the environmental parameter, the optical emission sensor generating a first measurement pulse having a measurement wavelength; a reference arm for receiving the reference pulse, the reference arm comprising an emission artefact adapted to convert the reference pulse into a second measurement pulse having the measurement wavelength; a time delay line for delaying a relative propagation of the measurement pulses; a light detector for measuring an optical energy of the first and second measurement pulses; and an optical link for optically connecting the pulse generator to the pulse splitter, and the sensing and reference arms to the light detector.
Abstract:
An optical system for sensing an environmental parameter, comprising: a pulse generator for generating a first pulse having a first wavelength and a second pulse having a second wavelength; a pulse splitter for splitting each one of the first and second pulse into a sensing pulse and a reference pulse; a sensing arm for receiving the sensing pulses therefrom and comprising a spectro-ratiometric sensor; a reference arm for receiving the reference pulses; a time delay line for delaying a relative propagation of the sensing pulses and the reference pulses; a light detector for measuring an optical energy of the sensing pulse and the reference pulse, for the first and second wavelengths; and at least one optical link for optically connecting the pulse generator to the pulse splitter, and the sensing and reference arms to the light detector.
Abstract:
The apparatus for sensing plural gases is substantially a gas sensor adopting planar lightwave circuit for constructing reference optical path and sensing optical path, which is a flat structure with abilities of high accuracy, long-term stability, and short response time. The gas sensor can be widely applied for monitoring the safety of a working environment, securing the safety of workers, alerting potential hazard in a factory, inspecting harmful materials in a specific area, testing leakage of a pipeline, inspecting waste gas exhausted from automobile/motorcycle, and monitoring the living quality of household environment.
Abstract:
The apparatus for sensing plural gases is substantially a gas sensor adopting planar lightwave circuit for constructing reference optical path and sensing optical path, which is a flat structure with abilities of high accuracy, long-term stability, and short response time. The gas sensor can be widely applied for monitoring the safety of a working environment, securing the safety of workers, alerting potential hazard in a factory, inspecting harmful materials in a specific area, testing leakage of a pipeline, inspecting waste gas exhausted from automobile/motorcycle, and monitoring the living quality of household environment.
Abstract:
A fiber-optic sensor is formed from three optical fibers. The distal ends of the fibers are optically linked by bonding their cores and directing their ends to mirrors. A portion of one of the fibers near the bonded point is exposed directly to the fluid to be sensed. The transmission characteristics of this fiber, the signal fiber, is then affected by the chemical constituents of the fluid. Light directed into the proximal end of one of the other fibers, the input fiber, is split between the signal fiber and the remaining fiber, the reference fiber. The ratio of the light in the signal fiber to the light in the reference fiber provides an indication of the chemical constituents that minimizes errors introduced by factors such as bends in the fibers and temperature.
Abstract:
There is disclosed a device capable of continuously measuring the presence and concentration of an analyte or analytes and a method for using said device in a liquid and/or a gas phase reaction volume. The inventive device comprises a sensor probe, a reservoir, and a detection means. The inventive device delivers reagent to the sensor probe in a flow method to directly and continuously renew reagent, thereby allowing the continuous measurement of the presence and the concentration of an analyte or analytes.
Abstract:
Colour changes in a target, such as a chemical sensor using a colour-changing indicator reagent to detect the presence of a poisonous gas, are continuously monitored by reflecting the target (10) on to a sensor (16) light originating from first one and then another light source (12a, 12b, etc), each having a different, known emission wavelength. In each cycle, direct light from the appropriate source is also collected by another sensor (14), connected in a closed loop (26) with circuitry in which the emission intensity is compared with a known reference value (38) and which adjusts the emission intensity so as to stabilise it at this constant reference value. Once this is stabilised, the reflected light intensity signal is passed to a data store (20), after which a divider (22) produces an output signal (36) representing the ratio of the reflected light intensities in two separate cycles originating from two different light sources (12a, 12b, etc). The conduct of each cycle is controlled by timing means (18). Where there are two light sources, the wavelength of the second (12b) is outside the response range of the target, that of the first (12a) being at or near the peak target response, so that all the divider output signals represent successive values of actual reflected light intensity. These signals can be processed to show the rate of colour change in the target and used to operate e.g. an alarm.