Abstract:
An apparatus includes analog-to-digital (A/D) conversion circuitry coupled to a pixel array. The A/D conversion circuitry includes a voltage ramp generator and a set of column A/D conversion circuits. The voltage ramp generator generates a single slope voltage ramp in a first state and a multiple slope voltage ramp in a second state. The set of column A/D conversion circuits is coupled with the voltage ramp generator. The apparatus further includes calibration circuitry coupled with the set of column A/D conversion circuits and operable to determine digital calibration data to adjust digital image data. The calibration circuitry provides analog calibration data that spans a calibration range to the set of column A/D conversion circuits instead of the analog image data from the pixel array being provided to the set of column A/D conversion circuits.
Abstract:
An apparatus includes analog-to-digital (A/D) conversion circuitry coupled to a pixel array. The A/D conversion circuitry includes a voltage ramp generator and a set of column A/D conversion circuits. The voltage ramp generator generates a single slope voltage ramp in a first state and a multiple slope voltage ramp in a second state. The set of column A/D conversion circuits is coupled with the voltage ramp generator. The apparatus further includes calibration circuitry coupled with the set of column A/D conversion circuits and operable to determine digital calibration data to adjust digital image data. The calibration circuitry provides analog calibration data that spans a calibration range to the set of column A/D conversion circuits instead of the analog image data from the pixel array being provided to the set of column A/D conversion circuits.
Abstract:
A method of an aspect includes acquiring analog image data with a pixel array, and reading out the analog image data from the pixel array. The analog image data is converted to digital image data by performing an analog-to-digital (A/D) conversion using a multiple slope voltage ramp. At least some of the digital image data is adjusted with calibration data. Other methods, apparatus, and systems, are also disclosed.
Abstract:
Provided is an AD converter including a first AD converting unit in which pixel columns of a pixel array are divided into at least two groups, and that compares a first ramp signal and a first pixel signal output from a first group of the pixel columns and performs AD conversion on the first pixel signal; and a second AD converting unit that compares a second ramp signal and a second pixel signal output from a second group of the pixel columns and performs AD conversion on the second pixel signal, in which the first ramp signal is a signal of which a level is decreased with a constant slope over time in a D-phase period for detecting a signal level of a pixel signal, and the second ramp signal is a signal of which a level is increased with a constant slope over time in the D-phase period.
Abstract:
A method of an aspect includes acquiring analog image data with a pixel array, and reading out the analog image data from the pixel array. The analog image data is converted to digital image data by performing an analog-to-digital (A/D) conversion using a multiple slope voltage ramp. At least some of the digital image data is adjusted with calibration data. Other methods, apparatus, and systems, are also disclosed.
Abstract:
PURPOSE: A double slope integrating ADC(Analog To Digital Converter) is provided to minimize a chip area by forming a switch control logic circuit part with a MCU(Micro Control Unit) and a single chip by using a standard CMOS(Complementary Metal Oxide Semiconductor) process. CONSTITUTION: An LOTA(Linear Operational Transconductance Amplifier) outputs a current by being applied with an analog input voltage and a reference voltage. First resistance applies the analog input voltage to an (+) input terminal in the LOTA. A first switch applies the analog input voltage to the first resistance according to a control signal. Second resistance applies the reference voltage to a (-) input terminal in the LOTA. The second switch applies the reference voltage to the second resistance according to the control signal. A capacitor outputs a voltage by charging an output current in the LOTA. A third switch initializes the output current in the LOTA and the voltage charged in the capacitor. A comparator outputs two constant voltages. A switch control logic circuit outputs the control signal controlling the operation of first, second, and third switches.