Abstract:
An image reading apparatus has a platen, first and second carriages, a light source supported on the first carriage, a first mirror to deflect reflected light from the original document toward the second carriage, one or more second mirrors supported on the second carriage to guide the light from the first mirror to image reading device, and rail members. The first carriage has first and second mirror support portions for supporting one side edge portion of the first mirror by two points, and a third mirror support portion for supporting the other side edge portion by one point. The first carriage is supported slidably at its opposite side edge portions respectively on the rail members via slide members disposed at four right and left places including two front and back places, and a height position is adjustable for supporting the first mirror by one point.
Abstract:
It is an object to provide an image reading apparatus for facilitating an optical adjustment of a mirror in supporting a carriage installed with the mirror on right and left rail faces to enable the carriage to move along a platen.In an apparatus configuration where first and second carriages 3, 4 moving along an original document image on a platen at predetermined velocities guide reflected light from the original document to an image reading means 11, the first carriage 3 supports one side edge portion of a mirror with first and second mirror support portions 32a, 32b and the other side edge portion with a third mirror support portion 32c, and thus supports the mirror by three points. Then, opposite side edge portions of the first carriage are supported slidably on right and left paired rail members 5a, 5b via slide members 33a to 33d disposed at four right and left places including two front and back places. At least one of the slide members 33c, 33d, at two front and back places disposed on the third mirror support portion side for supporting the first mirror by one point, is supported to be adjustable in height portion using an adjustment screw or the like.
Abstract:
An apparatus and method for adjusting the location of the image sensor in an image reading device is disclosed. The image sensor may be adjusted around or along any of three mutually perpendicular axes which intersect the optical lens system of the image reading device.
Abstract:
A mount for an optical device, such as a linear CCD array, is disclosed. The array is mounted on a base which is supported on a frame for adjustment relative thereto. The base is slidably movable on the frame for adjustment of the array in in-track and cross-track directions. The base is movable toward and away from the frame to provide a focus adjustment of the array. In order to provide a mount which can be easily and precisely adjusted to position the array along five degrees of freedom, adjustment screws are positioned such that the position of the array can be changed along one degree of freedom without changing the position of the array along any of the other degrees of freedom.
Abstract:
A mount for an optical device, such as a linear CCD array, is disclosed. The array is mounted on a base which is supported on a frame for adjustment relative thereto. The base is slidably movable on the frame for adjustment of the array in in-track and cross-track directions. The base is movable toward and away from the frame to provide a focus adjustment of the array. In order to provide a mount which can be easily and precisely adjusted to position the array along five degrees of freedom, adjustment screws are positioned such that the position of the array can be changed along one degree of freedom without changing the position of the array along any of the other degrees of freedom.
Abstract:
An image sensor sub-assembly for a scanner or other image acquisition device includes an image sensor array (134) that detects light imaged by a scanner optical system and an image sensor module (130) that enables calibration of the position of the image sensor array (134) relative to the optical system. In this way, with the optical system being constructed within tolerances, the module (130) enables alignment of the image sensor array (134) to the optical system by its adjustment. Preferably, the sensor module (130) is calibrated to defined standards, making the optical system's calibration independent of the specific module and the module's calibration independent of the specific optical system used in a given scanner. Preferably, the module (130) enables positioning of the sensor array (134) with six degrees of freedom. Further, the electronic circuit board, on which the sensor array (134) is integrated, is separate from the board, on which the analog to digital converters are located. This has the advantage of enabling replacement of the analog to digital converters, a primary source of improper operation in the scanner's electronic components, without requiring the replacement of the optical sensor array, and thus re-alignment.
Abstract:
There is disclosed an image reading apparatus in which the scanning optical system having a slit is caused to scan in a short-side direction of the slit, and light passed through the slit and reflected from or transmitted through an original is guided to a solid-state image pickup element through an optical image forming element so that the image is formed on the solid-state image pickup element and is read. In the apparatus, opening portions for detecting a shift in relative positional relationship between the slit and the solid-state image pickup element are formed in both end portions of the slit in its longitudinal direction corresponding to a portion other than an effective image region of the solid-state image pickup element.
Abstract:
An image sensor sub-assembly for a scanner or other image acquisition device includes an image sensor array (134) that detects light imaged by a scanner optical system and an image sensor module (130) that enables calibration of the position of the image sensor array (134) relative to the optical system. In this way, with the optical system being constructed within tolerances, the module (130) enables alignment of the image sensor array (134) to the optical system by its adjustment. Preferably, the sensor module (130) is calibrated to defined standards, making the optical system's calibration independent of the specific module and the module's calibration independent of the specific optical system used in a given scanner. Preferably, the module (130) enables positioning of the sensor array (134) with six degrees of freedom. Further, the electronic circuit board, on which the sensor array (134) is integrated, is separate from the board, on which the analog to digital converters are located. This has the advantage of enabling replacement of the analog to digital converters, a primary source of improper operation in the scanner's electronic components, without requiring the replacement of the optical sensor array, and thus re-alignment.
Abstract:
A mount for an optical device, such as a linear CCD array, is disclosed. The array is mounted on a base which is supported on a frame for adjustment relative thereto. The base is slidably movable on the frame for adjustment of the array in in-track and cross-track directions. The base is movable toward and away from the frame to provide a focus adjustment of the array. In order to provide a mount which can be easily and precisely adjusted to position the array along five degrees of freedom, adjustment screws are positioned such that the position of the array can be changed along one degree of freedom without changing the position of the array along any of the other degrees of freedom.
Abstract:
In an image reading apparatus having an easy-to-adjust optical system, a unit is composed of a first sub-unit including an image forming lens and a second sub-unit including a solid-state image pickup element. The first sub-unit and the second sub-unit are mutually adjusted in position in X-axis, Y-axis and Z-axis while the two sub-units are also adjustable around X-axis and Z-axis. After the first sub-unit and the second sub-unit are adjusted using a tool, the unit is then assembled into the apparatus. The unit is rotated around an optical axis of the image forming lens for adjustment of perpendicularity. The unit is also rotated around a line direction of the solid-state image pickup element for adjustment of scanning synchronization (the reading position in a sub-scan direction).