Abstract:
A mount for an optical device, such as a linear CCD array, is disclosed. The array is mounted on a base which is supported on a frame for adjustment relative thereto. The base is slidably movable on the frame for adjustment of the array in in-track and cross-track directions. The base is movable toward and away from the frame to provide a focus adjustment of the array. In order to provide a mount which can be easily and precisely adjusted to position the array along five degrees of freedom, adjustment screws are positioned such that the position of the array can be changed along one degree of freedom without changing the position of the array along any of the other degrees of freedom.
Abstract:
The invention provides a scanner system which in one embodiment includes only a single moving part in the document path, namley a drive roll, which serves not only to move the document through the system, but also to provide a backing against which the document is pushed while a proximate region thereof is being scanned. The invention in an embodiment also provides an opto-mechanical assembly that is shock-mounted to the frame of the system at only three-spaced apart locations, so that the assembly tends to be isolated from vibration and torsional forces.
Abstract:
PCT No. PCT/US92/04734 Sec. 371 Date Feb. 2, 1994 Sec. 102(e) Date Feb. 2, 1994 PCT Filed Jun. 5, 1992 PCT Pub. No. WO92/22109 PCT Pub. Date Dec. 10, 1992A laser beam scanning apparatus employs a movable reflector (32) having a large number of flat reflective sides (44) a deflector (16) which shifts the laser beam (10) at high speed across a plurality of the reflective sides (44). The movement of reflector (32) is synchronized with the deflection of the laser beam (10) to produce a desired scan pattern in a first scan direction (X). The reflective sides (44) of the movable reflector (32) may be angled relative to each other in a second direction (Y) to produce different scan lines thereby providing an X-Y scan pattern. The combined high speed beam deflection and motion of the reflector (32) provide scanning of the beam (10) in parallel scan segments thereby providing high scanning speed of the beam with a high degree of resolution.
Abstract:
For producing high quality patterns on large surfaces such as serigraphical printing frames having a light coating it is advantageous to produce the pattern by laser scanning, line by line, though by this technique the working width is rather limited. According to the invention, however, a large effective width is obtained by scanning with normal width a number of neighbouring zones (a-b, b-c) of the working surface. Extreme care should be taken for ensuring the side edges of the zones to coincide, but a high accuracy is achievable almost automatically with the use to a surface coating of a type that changes colour locally where it is exposed to the laser beam. Thereby a sensor (4) associated with the laser gun (2) can successively detect the location of the side of the neighbouring zone line by line, and the sensor signal can be used to control the new line scanning such that the new line will stop exactly at the end of the corresponding line in the neighbouring zone. Hereby even local irregularities in the zone border will be taken into account.
Abstract:
A position adjustment apparatus couples an imaging unit, which includes an imaging sensor and a focusing lens unit, to a base frame and is capable of adjusting a position of the imaging unit. The image sensor reads a document image and the focusing lens unit forms the document image by using the image sensor. The position adjustment apparatus may include an adjustment frame on which the focusing lens unit and the image sensor are installed, a height fixing member for coupling the adjustment frame to the base frame so as to fix a height of the adjustment frame at a fixed support position, and first and second adjustment members for coupling the adjustment frame to the base frame so as to adjust the height of the adjustment frame at first and second adjustable support positions. An image reading apparatus may include the imaging unit and the position adjustment apparatus.
Abstract:
An integrating cylinder for use as an illuminator for a film scanner includes a hollow cylinder including an inner surface defining a cavity therein and an outer surface, a diffusing layer of reflective material covering an inner surface of the hollow cylinder, a first end plate for sealing a near end of the hollow cylinder, and a second end plate for sealing a far end of the hollow cylinder opposite the near end. The hollow cylinder defines a slit formed parallel to a longitudinal axis of the hollow cylinder between the inner and outer surfaces at a predetermined line along a circumference of the hollow cylinder. The first end plate defines a hole which is decentered from the longitudinal axis of the hollow cylinder and can be tilted at a predetermined angle to the longitudinal axis of the hollow cylinder towards an area of the inner surface of the hollow cylinder. Additionally, the hole is located at a predetermined angular separation around the circumference of the hollow cylinder from the slit for receiving a light beam directed at the predetermined angle to the longitudinal axis into the cavity. After reflections in the cavity, the light emerges from the slit to form a line of uniform diffuse light.
Abstract:
A scanning system, having a fixed platen and optical imaging system and a translated reference scale, is provided for scanning of a modulated light beam (or a set of parallel, independently modulated light beams) onto an object surface. The optical system provides a combined light beam including the modulated light beam and a reference light beam. An optical imaging device moves the combined light beam along a scan line, and a translatably mounted beam splitter splits the combined light beam to direct at least some of the reference light beam onto a reference scale and a sensor. The reference scale sensor, which is rigidly attached to the beam splitter, and is responsive to reference beam position in two directions, provides a clocking signal indicative of beam position along the scan line and a vernier position signal indicative of beam position in a direction transverse to the scan line. An optical stepper controls the translation of the beam splitter such as to position precisely each of a series of scans in a direction transverse to the scan lines.
Abstract:
In connection with graphical drum scanning a very high accuracy of the drum is required and the scanner unit has to be very accurately adjusted. The invention provides for different purely dynamic adjustment methods, which enable a significant reduction of the accuracy requirements and therewith a reduced price of the scanner units.
Abstract:
The invention provides a scanner system which in one embodiment includes only a single moving part in the document path, namley a drive roll, which serves not only to move the document through the system, but also to provide a backing against which the document is pushed while a proximate region thereof is being scanned. The invention in an embodiment also provides an opto-mechanical assembly that is shock-mounted to the frame of the system at only three-spaced apart locations, so that the assembly tends to be isolated from vibration and torsional forces.