Abstract:
A light guide unit (20) includes, a first light guide (21) having a column shape that takes a light incident upon one end surface and emits a light from other end surface and from a light emitter on a side surface of the first light guide (21), and a second light guide (22) having a column shape that takes the light emitted from the other end surface of the first light guide (21) then incident upon one end surface of the second light guide (22), and emits the light from a light emitter on a side surface of the second light guide (22), and the one end surface of the second light guide (22) are located close proximity to the other end surface of the first light guide (21). The first light guide (21) includes a first mating member (28A), and the second light guide (22) includes a second mating member (28B) engaging with a first alignment member such that the side surface of the first light guide (21) having the light emitter and the side surface of the second light guide (22) having the light emitter are flush with each other, and the other end surface of the first light guide (21) is located close proximity to the one end surface of the second light guide (22).
Abstract:
A light guide includes a plurality of boss portions. A round hole portion is provided near the center of a base member for fixing the light guide, and slit portions are provided on both ends thereof. The round hole portion supports one boss portion in both the longitudinal direction and the lateral direction of the light guide. The slit portions support boss portions in the lateral direction of the light guide, but are free in the longitudinal direction of the light guide. That is, the center of the light guide is fixed from both directions, and thus both ends of the light guides can expand away in the longitudinal direction. This cuts the influence of expansion by half.
Abstract:
A scanner module and an image scanning apparatus employ an illuminator that includes at least one light emitting diode, a light guide to change the direction of the light from the light emitting diode, and a light source holder to which the light emitting diode is mounted, the light source holder being positioned in relation to the light guide such that the light source holder covers an incidence face of the light guide, on which the light from the light source is incident, the surface of light source holder facing the incidence face reflecting light incident thereupon. The reflection of light by the light source holder reduces the possibility of leakage of light, and can enhance luminous intensity of light of the illuminator.
Abstract:
Deformation of a second optical carriage (B) due to heat is large on a (C) side where an inverter (31) is attached and small on a (D) side. A mirror supporting portion inside the second optical carriage (B) supports the mirror at one point on the (C) side and at two points on the (D) side. An angle of the reflecting mirror (8) depends on two protrusions on the (D) side where thermal deformation is small, and the mirror is supported at one point on the (C) side where thermal deformation is large. Thus, even if an angle of the mirror supporting portion (C) changes, the angle of the reflecting mirror (8) is not affected. Therefore, a change in the angle of the reflecting mirror (8) can be controlled to be small when temperature of the second optical carriage (B) rises during a reading operation, and decrease in reading accuracy due to thermal deformation of the second optical carriage (B) can be suppressed.
Abstract:
An image reading apparatus is provided for reading out images printed on a document. The apparatus includes a casing elongated in the primary scanning direction and a transparent cover supported by the casing. In image-reading operation, the cover is held in sliding contact with a document at an image reading line. The apparatus further includes an insulating substrate attached to the casing, light sources for illuminating the image reading line, light sensors for receiving reflected light coming from the image reading line and a luminosity adjuster supported by the casing for equalizing luminosity along the image reading line.
Abstract:
An image sensor according to the present invention includes a casing (4), a light source disposed in the casing (4) for emitting light toward an object (K) to be read, and an image sensor board (6) provided, on an obverse surface thereof, with a plurality of light receiving elements (52) for generating image signals upon receiving light reflected by the object (K). The image sensor board (6) is disposed so that the obverse surface thereof is directed inwardly of the casing (4). The substrate (6) is provided with a light shielding layer (61) for covering the reverse surface of the substrate at least entirely over a portion of the obverse surface where the plurality of light receiving elements (52) are mounted, so that disturbing external light is prevented from entering inside the casing (4).
Abstract:
A compact, low-cost photographic film scanner 10 particularly adapted to scanning Advance Photo System (APS) film includes an imaging assembly having an elongated L-shaped housing with a photosensor, for example, a CCD 66, mounted directly to one end of the housing, the other end having a scanning aperture and film rails 84 integrally formed on the housing, the film rails 84 defining a film plane 86 over the scanning aperture. The housing comprises a two piece snap together configuration that provides support for the focusing lens 77 as well the photosensor and film scan gate. Additionally, the housing includes support arms 120 that receive and lock in place an LED illuminant head assembly 200. The imaging apparatus housing 70 conveniently snap locks into place on the scanner chassis in an opening formed in the film drive path 38.