Abstract:
A scanning apparatus for preventing defocus aberration is provided. The scanning apparatus includes a flatbed scanning portion and a scanning module. The flatbed scanning portion includes a glass platform. The scanning module includes a scanning module case, a light source, multiple reflective mirrors, a lens, an optical sensing element, a printed circuit board and a metallic post. The metallic post is interconnected between the scanning module case and the printed circuit board. The printed circuit board is not in direct contact with the scanning module case so as to prevent defocus aberration resulting from thermal expansion.
Abstract:
A lens array unit includes first and second lens arrays cooperative with each other. The first lens array is provided with a plurality of first convex lenses and a first transparent holder formed integral with the first lenses. Each of the first lenses has first and second lens surfaces. The second lens array is provided with a plurality of second convex lenses and a second transparent holder formed integral with the second lenses Each of the second lenses has third and fourth lens surfaces. The second lens array is attached to the first lens array so that the third lens surfaces face the second lens surfaces. The lens array unit further includes a light shield mounted on the first lens array. The light shield is formed with a plurality of through-holes each facing the relevant one of the first lens surfaces.
Abstract:
In a contact-type image sensor according to the present invention, a protrusion is formed in a transparent plate, a recess is formed in a sensor frame, and the transparent plate is engaged with the sensor frame so that the heights of surfaces of the transparent plate and the sensor frame on sides of conveying a manuscript are substantially the same. In conventional techniques, it was necessary to bend a manuscript conveying path because of different heights of a protrusion of the frame and the transparent plate. Further, even though the heights of the sensor frame and the transparent plate are the same, a contact portion therebetween forms an angle, whereby a contact surface is not brought into close contact alone an entire length of an image sensor, and gaps are partially formed in the contact surface. Therefore, at time of cleaning a surface of the transparent plate using a solvent such as alcohol to remove dirt on the transparent plate, the solvent and extraneous matters intrude inside the image sensor from the gaps, a passage of light is obstructed, and therefore light-and-shadow information of an image of the manuscript was not correctly transmitted to sensor.
Abstract:
A scanning module includes a body, a reflecting unit, and an image capture unit. The body includes a reflecting chamber disposed in a surrounding wall. The surrounding wall is formed with an incident hole allowing an incident light field to be transmitted into the reflecting chamber therethrough along an incident axis. The reflecting unit is disposed within the reflecting chamber, and includes a first reflector for reflecting the incident light field, as well as second and third reflectors for reflecting light transmitted from the first reflector to the image capture unit. An angle formed between the incident axis and a normal line of the first reflector is not smaller than 30 degrees. The image capture unit is disposed nearer to the incident hole than the first reflector along a direction of the incident axis, and includes a lens, and a sensing member.
Abstract:
An image reading imaging optical system for imaging image information on a line sensor and reading the image information has an imaging optical element including a plurality of off-axial reflecting surfaces differing in the direction of incidence and the direction of emergence of a reference axis ray from one another and having curvatures.
Abstract:
A lens array unit includes first and second lens arrays cooperative with each other. The first lens array is provided with a plurality of first convex lenses and a first transparent holder formed integral with the first lenses. Each of the first lenses has first and second lens surfaces. The second lens array is provided with a plurality of second convex lenses and a second transparent holder formed integral with the second lenses Each of the second lenses has third and fourth lens surfaces. The second lens array is attached to the first lens array so that the third lens surfaces face the second lens surfaces. The lens array unit further includes a light shield mounted on the first lens array. The light shield is formed with a plurality of through-holes each facing the relevant one of the first lens surfaces.