Abstract:
A method of producing an anti-reflection film includes forming a first layer on a transparent substrate, forming a second layer on the first layer, and forming the third layer on the second layer. When an optical admittance Y at a surface of the second layer is represented by, 1 Y = H E = ( x + iy ) where i is the imaginary number unit, thicknesses and reflective indexes of the substrate, first layer, second layer, and third layer are selected so that x and y satisfy the following formula, 0.9xnull(n2nulln02)/2n0null2
Abstract:
The invention relates to a method for forming a multilayer thin film and an apparatus thereof, which are able to form a thin layer at an accuracy of 0.5 nanometers or less on at least a specified layer during formation on a substrate (W) and to increase the yield of multilayer thin film products. X-rays are irradiated from X-ray irradiating means (6) onto the surface of a multilayer thin film during formation on the substrate (W) at angles from 0 to 1.5 degrees, and the obtained reflected X-rays are measured by X-ray measuring means (7) while varying the incident angle null, wherein reflectivity curve depicting the intensities of the reflected X-rays are obtained with respect to the scattering angle 2null, and the reflectivity curve, whose scattering angles exist in a range of 0 to 1 degree, of the reflectivity curve is analyzed. Herein, the thickness of a thin layer during formation is estimated, and a thin layer having a prescribed thickness is formed by controlling the thickness of a layer during formation, utilizing the estimated results.
Abstract:
There is provided a UV-reflective interference layer system for transparent substrates with broadband anti-reflection properties in the visible wavelength range. The interference layer system includes at least four individual layers. Successive layers have different refractive indices and the individual layers contain UV and temperature-stable inorganic materials.
Abstract:
The durability and abrasion resistance of nano-structured optical surfaces, particularly those formed of or on polymeric substrate, are enhanced by at least one of adhering to it a fluorinated carbon molecule or other reactive lube composition as a monolayer coating (or a thin and substantially uniform multi-layer coating) and by treatment with a surface-active cross-linking agent.
Abstract:
The invention relates to a method and an arrangement for applying a coating on an end of an optical fiber by dipping said end into a unsolidified coating liquid. In a first sequence, the fiber end is moved towards the surface (18) of the liquid by a gripping means (11). The distance between the end face (26) of the fiber and the surface of the liquid is measured continuously by measuring means including a vision camera (23). The measured actual distance value is compared with a preset distance value and the first moving sequence is ended when the actual distance value is equal to the preset value. In a second sequence, the fiber end is dipped a predetermined depth in the liquid.
Abstract:
A method of making a coated substrate includes providing a substrate having a functional coating with a first emissivity value; depositing a coating material having a second emissivity value over at least a portion of the functional coating prior to heating to provide a coating stack having an emissivity value greater than the emissivity value of the functional coating; and heating the coated substrate.
Abstract:
A method of forming luninescent films or coatings from a liquid precursor mixture utilizing a RF-induced plasma spraying process is disclosed. The inventive method results in the formation of luminescent films that have spherical, nano to micron sized particles associated therewith.
Abstract:
A dip coating process is disclosed that provides a coating on the surfaces of an optical element with more consistent coating thickness. The objectives of this invention are accomplished by holding the coated optical element so that a meniscus is created between the element and the surface of the coating solution. At such a position, the capillary force generated by the touching meniscus helps drain down excessive coating at the bottom of the substrate to quickly yield a consistent coating thickness over the coated surface.
Abstract:
A method provides high-vacuum vapor coating methods, with the methods producing novel coating compositions with surprisingly increased performance levels over coatings produced from the same materials under different processing conditions. Compounds of the general formulae II, III and IV, defined herein, can be applied by vapor deposition from a merely compacted, rather than fused or sintered porous matrix source with improved performance, even where the same chemicals are used in the coating, at the same coating temperatures. The generally useful materials include silanes and siloxanes, and siloxazanes of various formulae I, II, III and IV.
Abstract:
The present invention relates to a substrate in particular of EUV microlithography, to the production of a substrate of this type and to the use of this substrate as a substrate for mirrors and/or masks or mask blanks in particular in EUV microlithography.