Abstract:
In one aspect the current invention provides a method for automatic real time monitoring of true color in a liquid. A sample is automatically withdrawn from the liquid in real time and is then automatically filtered in real time. The true color in the filtered sample is automatically detected in real time and the true color is automatically quantified in the filtered sample in real time. In another aspect, the present invention provides an apparatus that automatically monitors true color in a liquid in real time. The apparatus has a pump for automatically withdrawing a sample from the liquid in real time and a filter for automatically filtering the sample in real time. The apparatus also has an absorption spectrophotometer for automatically detecting true color in the filtered sample in real time and a controller for automatically quantifying the true color of the filtered sample in real time.
Abstract:
The surface state monitoring apparatus comprises: a wafer cassette holding a plurality of semiconductor wafers; an incidence optical system for applying infrared radiation to at least one of said plurality of semiconductor wafers; a detection optical system for detecting the infrared radiation which has undergone multiple reflection in the semiconductor wafer and exited from the semiconductor wafer; surface state monitoring means for monitoring surface states of the semiconductor wafer, based on the infrared radiation detected by the detection optical system; and displacing means for displacing the wafer cassette relative to the incidence optical system and the detection optical system. Surface states of said plurality of semiconductor wafers are sequentially monitored while the wafer cassette is displaced relative to the incidence optical system and the detection optical system by the displacing means, whereby surface states of said plurality of semiconductor wafers held in the wafer cassette are continuously monitored.
Abstract:
An infrared imager includes an array of capacitance sensors that operate at room temperature. Each infrared capacitance sensor includes a deflectable first plate which expands due to absorbed thermal radiation relative to a non-deflectable second plate. In one embodiment each infrared capacitance sensor is composed of a bi-material strip which changes the position of one plate of a sensing capacitor in response to temperature changes due to absorbed incident thermal radiation. The bi-material strip is composed of two materials with a large difference in thermal expansion coefficients.
Abstract:
Spectroscopic apparatus for sequentially detecting the presence of a plurality of elements in a sample. The apparatus includes a plurality of lamps (1a-1e) each of which is for detecting the presence of a respective at least one predetermined element in a plurality of elements. A beam selector (13) which may be a mirror, is operative to direct a beam of light (7) from any one of lamps (1a-1e) to an analysis zone (8). The apparatus includes a monochromator (15), the drive (24) of which is under the control of a controller (25) with a memory device (26) linked thereto. Predetermined settings for the monochromator corresponding to the peak settings for each wavelength of interest can be stored in memory (26) for subsequently driving the monochromator to those settings without the need to undertake a peaking routine for each elemental analysis, thereby saving analyses time. The lamp and beam selector arrangement of the apparatus substantially reduces the time required to change from one lamp to another thereby facilitating sequential spectroscopic multi-element analyses of samples. Apparatus which uses a flame for atomising a sample includes valves (19 and 20) for controlling the flow of oxidant (17) and fuel (18) gases to a spray chamber (23) and then analysis zone (8), the oxidant (17) being supplied via a nebuliser (22). The valves (19 and 20) are preferably high speed oscillating valves having an adjustable on to off time ration under the control of a microprocessor (21). The oscillating valves (19 and 20) allow rapid changes to be made to the oxidant and fuel gas flows, thereby also saving analysis time.
Abstract:
The present invention relates to spectral analysis systems and methods for determining physical and chemical properties of a sample by measuring the optical characteristics of light emitted from the sample. In one embodiment, a probe head for use with a spectrometer includes an optical blocking element for forcing the optical path between the light source and an optical pick-up optically connected to the spectrometer into the sample. The probe head also includes a reference shutter for selectively blocking light emitted from the sample from reaching the optical pick-up to facilitate calibration of the spectrometer.
Abstract:
An apparatus and a method are disclosed for measuring at least one desired parameter of a patterned structure having a plurality of features defined by a certain process of its manufacturing, wherein the structure represents a grid having at least one cycle formed of at least two metal-containing regions spaced by substantially transparent regions with respect to incident light defining a waveguide. The method utilizes an optical model on at least some of the features of the structure defined by a certain process of its manufacturing, and is capable of determining theoretical data representative of photometric intensities of light components of different wavelengths specularly reflected from the structure and of calculating said at least one desired parameter of the structure.
Abstract:
Disclosed are spectrophotometer systems and methodology for obtaining data of improved precision therefrom, including replacement of data determined to be suspect based on comparison of multiple baselines.
Abstract:
The present invention is a fully automated modified batch dyeing process that provides a process that reduces water consumption, reduces environmental pollution, and reduces the energy and chemical consumption of the conventional batch dyeing process through efficient reuse of spent dyebath. The invention provides a holding tank which stores the spent dyebath, and an analysis system which allows for the analysis of the dyebath in the holding tank so that the dyebath may be reconstituted and used in the batch dyeing process.
Abstract:
A terahertz wave detector is for detecting a terahertz wave which is emitted from a terahertz wave generator and which is transmitted through a sample. The timing, at which a probe light is irradiated on an optical switching device in the terahertz wave detector, is vibratingly varied by driving a movable reflector in a variable optical delay device at a predetermined vibration frequency. The resultant detection signal generated thereby and changing periodically and vibratingly is subjected to frequency analysis by a spectrum analyzer in a spectroscopic processor. The detection signal has the same temporal waveform as that of the terahertz wave and subjected to scale conversion. Therefore, the frequency analysis of the detection signal enables frequency measurement of a terahertz wave in real time. As a result, real-time spectroscopy is possible, and the device configuration is simplified.
Abstract:
A sample measurement and analysis system comprises a fiber-optic channel selecting apparatus, a plurality of optical source lines, a plurality of optical return lines, a plurality of sample test sites, and an optical receiving device. The selecting apparatus comprises an optical input selection device, an optical output selection device, and a controller element. The optical input selection device defines a first optical path running between a first input end and a first output end. The first output end is rotatable to a plurality of first index positions defined along a first circular path. The optical output selection device defines a second optical path running between a second input end and a second output end. The second input end is rotatable to a plurality of second index positions defined along a second circular path. The controller element communicates with the optical input selection device and the optical output selection device for selectively aligning the first optical path with the first index positions and the second optical path with the second index positions.