Abstract:
An optical system and an optical information processing equipment utilizing the same are disclosed. The optical system comprises a laser diode (1) and a hologram lens (5, 11, 51, 93) has an interference fringe prepared by the interference of a beam having substantially the same intensity distribution and/or phase characteristic as that of a laser beam emitted from the laser diode with a beam having a desired characteristic. The laser beam from the laser diode is irradiated on the hologram lens so that its characteristic is converted into the desired characteristic.
Abstract:
Apparatus for producing a light source of a desired shape from a light source such as a laser comprising means for directing the light source along a predetermined path 10 as a playback beam to impinge upon a hologram 12 at a predetermined angle to produce the continuous self-luminous source of the desired shape. The hologram is recorded upon a substrate 28 coated with a photosensitive material 30 by interference between recording and object beams 24, 48 derived from the same source 20 of coherent radiation. The recording beam 24 is directed toward the substrate at an orientation and angle so that the playback beam 10 is a conjugate of the recording beam. The object beam 48 is directed to the substrate 28 over a path which includes a diffuser plate 36 covered with an opaque material in all areas except for a continuous area which defines the desired shape. The part of the object beam which impinges upon the substrate is limited by a stop 17 which defines the numerical aperture.
Abstract:
A head up display includes a simplified holographic combiner which has a low surface spatial frequency for avoiding flare. Symbology generated by a cathode-ray-tube is focused by relay optics and then reflected by a holographic optical element toward the holographic combiner. The last mentioned holographic optical element is provided with optical power in part compensating for distortions attributable to the large off-axis angle at which the holographic combiner is operated.
Abstract:
A method for constructing and reconstructing a hologram. The hologram is constructed by irriadiating two construction beams (102,103) having different incidence angles (β', a') onto a hologram record medium (101) and forming interference fringe patterns therein by the two construction beams. The hologram is reconstructed by irradiating a reconstruction beam (106) onto the interference fringe patterns so as to diffract the reconstruction beam in accordance with the interference fringe patterns. At least one of the two construction beams irradiates the hologram record medium through at least one optical deviation element (119). The incidence angle, relative to the interference fringe patterns, of the reconstruction beam is different from that of each construction beam and arranged to be nearly a Bragg angle at any point of the hologram.
Abstract:
A hologram scanner includes a rotatable hologram disk (7) on which a plurality of hologram lenses (6) are arranged circumferentially, and a light beam guide mechanism (18,19, 20) for successively shifting irradiation regions of the hologram disk in a predetermined direction with respect to the direction of rotation of the hologram disk, to apply a light beam (2) successively to the hologram lenses on the hologram disk, so that the scanning of a reading window (12) with the light beam (2) is effected in all directions with high density. The hologram scanner is employable as a bar code reading device in a POS or UPC system.
Abstract:
L'invention concerne un dispositif viseur du type à champ instantané agrandi au moyen d'un miroir holographi que hors axe (5) qui réfléchit les rayons incidents (α2) dans une direction différente (α1) par rapport à sa normale (N). Le miroir holographique (5) est dans une position telle que le champ instantané (ClH) de l'oeil (1) d'un observateur est égal au champ total d'une source lumineuse collimatée, réfléchie sur ce miroir holographique (5). Le miroir holographique (5) peut être est enregistré au moyen de deux sources lumineuses monochromatiques cohérentes situées dans des directions α1 et α2, à l'infini de part et d'autre du miroir holographique ou avec deux sources ponctuelles non à l'infini.
Abstract:
(D An optical display system (10) employs a holographic optical element (20 or 22) that has a holographic fringe pattern which is coordinated with the phosphor emission peak (32) of a cathode ray tube (24) to eliminate perceptible variations in image brightness. The holographic optical element has a reflection characteristic (34) that defines two diffraction efficiency peaks (36 and 38) which are resolved by a low diffraction efficiency dip (40) that is interposed between them. The optimum wavelength spacing between the two diffraction efficiency peaks for a given wavelength spacing is determined by computing for all observer (28) head positions and look angles of concern the differences among the areas under the intergrated efficiency characteristics (42) for the reflection characteristic (30) holographic optical element and the phosphor emission characteristic of the image-producing cathode ray tube. The optimum wavelength spacing is that which provides the desired variation among the computed difference values, which represent the display brightness uniformity. The center dip reflection characteristic increases the spectral bandwidth of the holographic optical element and thereby increases its reflectivity to promote good contrast with the use of a cathode ray tube operating at reduced beam current levels. When installed as a combiner (12 or 14) in a head-up display system (10) for aircraft, the holographic optical element superimposes the image on an outside scene without introducing significant discoloration of the scene.
Abstract:
In a light beam scanning apparatus using a hologram rotator (1), a post-hologram (9) is provided forfurther diffracting a light beam diffracted by the hologram rotatorto a direction opposite to that in which the light beam was first diffracted. By combining the kinds of wave fronts used for forming the holograms of the hologram rotator (1) and the post-hologram, the light beam scanning apparatus reduces deviation of the light beam scanning position caused by mode hopping of a laser diode, and an improved linear scanning of the light beam and/or image focusing characteristic is obtained.
Abstract:
Es wird ein Verfahren zur holographischen Aufnahme von Objekten, insbesondere von Mikrofilmen (MF₁, MF₂), auf einer strahlungsempfindichen, insbesondere lichtempfindli chen Schicht (22) eines Aufnahmehologrammm-Trägers (III) vorgeschlagen, bei welchem Verfahren man die von den Oberflächenpunkten (R₂*, R₃* ...) des Mikrofilms ausgehen den Strahlen auf ein entwickeltes Zwischenhologramm (18) eines Zwischenhologramm-Trägers (II) fallen läßt, welches das mit einer Zwischenhologramm-Referenz-Strahlenquelle (R₂) aufgenommene oder dementsprechend synthetisch er zeugte Hologramm eines Punkthologramms ist, wobei man den Mikrofilm (MF) und den Zwischenhologramm-Träger (II) derart relativ zueinander anordnet, daß die Objektpunkte als örtlich gegeneinander versetzte Zwischenhologramm- Referenz-Strahlenquellen dienen zur Rekonstruktion jeweils eines entsprechenden Punkthologramms in der Aufnahme hologramm-Schicht (22). Dann wird die Aufnahmeholo gramm-Schicht (22) entwickelt und schließlich zur Rekon struktion des aufgenommenen Mikrofilms das Aufnahmeho logramm (III) mit einer Wiedergabe-Referenz-Strahlenquelle (R₁*) bestrahlt, welche derart angeordnet ist, daß die Wie dergabe-Referenz-Strahlenquelle (R₁*) die Punkthologram me der Aufnahmehologramm-Schicht (22) rekonstruiert. Dieses Verfahren kommt ohne kohärente Aufnahme- Strahlenquelle aus.
Abstract:
Operating parameters for a multiple facet holographic disc scanner are adjusted on real time basis as a function of the actual diffraction efficiency of the facet region aligned with the impinging laser beam. The operating parameters are adjusted to achieve optimum signal levels independent of facet characteristics. Diffraction efficiency is inversely related to zero order beam power for a given level of input beam power. A photodetector measures the zero order beam power. The output of this photodetector is used to control video amplifier gain and/or semiconductor laser current.