Abstract:
Segmented waveguides electrically coupled to a resonator and methods for electrically coupling waveguides to a resonator are disclosed. The resonator can be a split ring resonator. The disclosed structures can be useful to fabricate waveguide devices included, for example, in sensors and optical elements.
Abstract:
A strip loaded waveguide comprises a slab and a strip, wherein the strip is separated from the slab. Nevertheless, a guiding region is provided for propagating an optical mode and this guiding region extends both within the strip and the slab. A layer of material having an index of refraction lower than that of the strip and the slab may be disposed between and separate the strip and the slab. In one embodiment, the slab comprises a crystalline silicon, the strip comprises polysilicon or crystalline silicon, and the layer of material therebetween comprises silicon dioxide. Such waveguides may be formed on the same substrate with transistors. These waveguides may also be electrically biased to alter the index of refraction and/or absorption of the waveguide.
Abstract:
A metal waveguide is coupled to a dielectric waveguide to obtain transmission of light in a plasmon mode along an edge of the metal waveguide. Efficient, broadband light transmission is obtained, achieving a low insertion loss, using standard processing tools. An efficient integrated optical circuit is obtained.
Abstract:
A three dimensional adiabatic taper provides a funnel for light to be coupled into high index material. The taper is formed by shadow deposition or sputtering from polysilicon, which can be used to match the refractive index of waveguiding material to which the taper is optically coupled. When designed with the correct shape and adequate smoothness, such tapers form efficient waveguide couplers. Once the light has been coupled through the adiabatic coupler into an index guide on a wafer or chip, an integral design of the transition between the index guide and photonic crystal ensures low loss coupling with a minimum of diffraction and back reflection.
Abstract:
Optical switches and logic devices comprising microstructure-doped nanocavity lasers are described. These switches and logic devices have gain and thus can be cascaded and integrated in a network or system such as for example on a chip. Exemplary switching elements switch the intensity, wavelength, or direction of the output. Exemplary logic devices include AND, OR, NAND, NOR, NOT, and XOR gates as well as flip-flops. Microfluidic sorting and delivery as well as optical tweezing and trapping may be employ to select and position a light emitter in an nanooptical cavity to form the nanolaser.
Abstract:
The invention is a method of introducing porous membranes into MEMS elements by supporting the membranes by frames to form an heterostructure. This is achieved by attaching to a structured or porous substrate one or more monolithically fabricated frames and membranes. Having membranes disposed on frames enables them to be batch processed and facilitates separation, handling and mounting within MEMS or nanofluidic systems. Applications include, but are not limited to, filters for gases or liquids, electron transmissive windows and scanning electron microscopy (SEM) accessible arrays of nanotest tubes containing liquid phases and other sample states. The invention includes the apparatus made by the method.
Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
Abstract:
Reduction of laser threshold in an electrically pumped vertical cavity laser is the consequence of interpositioning of an electrode layer intermediate the active, photon producing region, and at least one of the two Distributed Bragg Reflectors defining the laser cavity. The advance is a consequence of the lowered pump circuit resistance due to elimination of one or both DBRs--in particular, to elimination of the p-doped DBR--from the pump circuit.
Abstract:
The present invention provides a mixed analog and digital chip-scale reconfigurable WDM network. The network suitably includes a router that enables rapidly configurable wavelength selective routers of fiber optic data. The router suitably incorporates photonic wavelength selective optical add/drop filters and multiplexers.
Abstract:
A device and method for making a microfluidic separation device. A microfluidic separation device could include a microfluidic column having an inlet, the microfluidic column being configured to hold a first fluid and the microfluidic column including a porous portion, and an outlet attached to the microfluidic column, the outlet being configured to output a second fluid. The method may include providing a microfluidic column having an inlet, configuring the microfluidic column to hold a first fluid, forming a porous portion in the microfluidic column, and attaching an outlet to the microfluidic column.