Abstract:
Some embodiments are directed to an unmanned vehicle for use with a companion unmanned vehicle. The unmanned vehicle includes a position unit that is configured to determine a current position of the unmanned vehicle. The unmanned vehicle includes a memory unit that is configured to store a planned path of the unmanned vehicle. The unmanned vehicle includes a control unit that is configured to determine that the unmanned vehicle is off-course based on the current position of the unmanned vehicle and the planned path assigned to the unmanned vehicle, generate a delay and a corrected path for the unmanned vehicle, and communicate the delay and the corrected path to the companion unmanned vehicle. The control unit is further configured to control a movement of the unmanned vehicle along the corrected path after the delay.
Abstract:
Some embodiments are directed to an unmanned vehicle for use with a companion unmanned vehicle. The unmanned vehicle can include a satellite navigation unit that is configured to receive a satellite signal indicative of a current position of the unmanned vehicle. The unmanned vehicle can also include an inertial navigation unit that is configured to determine the current position of the unmanned vehicle. The unmanned vehicle can also include a control unit disposed in communication with the satellite navigation unit and the inertial navigation unit. The control unit is configured to determine a planned position of the unmanned vehicle based on the planned path, compare the current position determined by the inertial navigation unit with the planned position based on the planned path, and control the movement of the unmanned vehicle based on at least the comparison between the current position and the planned position.
Abstract:
A method is provided of replacing a first drone base station with a second drone base station, the first drone base station, the method comprising: sending by the first drone base station first pilot signals indicating a cell identifier; receiving by the first drone base station information that the second drone base station is in the vicinity of the first drone base station; sending by the second drone base station second pilot signals which indicate the same cell identifier as the first drone base station; receiving by the first drone base station from the second drone base station an indication to cease to send first pilot signals;and dependent upon receiving by the first drone base station from the second drone base station the indication to cease to send first pilot signals, ceasing by the first drone base station the sending of first pilot signals.
Abstract:
Systems and methods configured to form and point beams from one or more unmanned aerial vehicles (UAVs) toward a target coverage area on the ground. One embodiment describes dividing the target coverage area on the ground among multiple UAVs when each UAV antenna system generates static beams. Another embodiment describes dividing the target coverage area on the ground among multiple UAVs when their antenna systems are capable of dynamically steering their respective beams. Another set of embodiments describe systems and method to allow multiple UAVs to provide service in the same area on the ground using the same spectrum.
Abstract:
The disclosed subject matter relates to methods and apparatus facilitating assessments of structural and electronic features, parameters, characteristics or any combination thereof using one or more unmanned autonomous vehicles. In some embodiments, an unmanned vehicle may be configured to monitor one or both of the structural and electrical characteristics of an object, and can also include cooperative behavior between two or more unmanned vehicles to test electrical communication in a directional fashion.
Abstract:
Disclosed herein are example embodiments for unoccupied flying vehicle (UFV) coordination. For certain example embodiments, at least one machine, such as a UFV, may: (i) obtain one or more theater characteristics; or (ii) coordinate at least one behavior of at least one UFV based, at least partially, on one or more theater characteristics. However, claimed subject matter is not limited to any particular described embodiments, implementations, examples, or so forth.
Abstract:
Disclosed herein are example embodiments for inter-vehicle flight attribute communication for an unoccupied flying vehicle (UFV). For certain example embodiments, at least one machine may: (i) obtain at least one indication related to imparting at least one flight attribute corresponding to a UFV; or (ii) transmit to a remote UFV at least one indicator of at least one flight attribute corresponding to a UFV based at least partially on at least one indication related to imparting at least one flight attribute. However, claimed subject matter is not limited to any particular described embodiments, implementations, examples, or so forth.
Abstract:
Systems and methods for UAV safety are provided. An authentication system may be used to confirm UAV and/or user identity and provide secured communications between users and UAVs. The UAVs may operate in accordance with a set of flight regulations. The set of flight regulations may be associated with a geo-fencing device in the vicinity of the UAV.
Abstract:
Systems and/or methods for forming a multiple-articulated flying system (skybase) having a high aspect ratio wing platform, operable to loiter over an area of interest at a high altitude are provided. In certain exemplary embodiments, autonomous modular flyers join together in a wingtip-to-wingtip manner. Such modular flyers may derive their power from insolation. The autonomous flyers may include sensors which operate individually, or collectively after a skybase is formed. The skybase preferably may be aggregated, disaggregated, and/or re-aggregated as called for by the prevailing conditions. Thus, it may be possible to provide a “forever-on-station” aircraft.
Abstract:
The present disclosure relates to systems and methods of tracking persons and objects and capturing video, still images and other data in real time of the same. The present disclosure includes an unmanned aerial vehicle (e.g., UAV) which follows a trackable system coupled to an object or on individual's person. The UAV may have a camera component which may record video, still images and other data (position, speed, acceleration, cadence, etc.) of the trackable system and items in close proximity thereto. Advantageously, the UAV may transmit video feeds and still images to a monitoring station or device such that security personnel and other persons of interest can respond timely to unplanned incidents and emergencies. In one or more implementations, a network of UAVs may fly alongside each other to capture video of multiple targets without causing collisions.