Abstract:
An optical article including a core; at least one cladding layer; and a narrow fluorine reservoir between the core and the cladding layer. The fluorine reservoir has a higher concentration of fluorine than either the cladding layer or the core. One particular embodiment includes a core including a halide-doped silicate glass that comprises approximately the following in cation-plus-halide mole percent 0.25-5 mol % Al2O3, 0.05-1.5 mol % La2O3, 0.0005-0.75 mol % Er2O3, 0.5-6 mol % F, 0-1 mol % Cl.
Abstract translation:一种包括芯的光学制品; 至少一层包层; 以及在芯和包层之间的窄氟储存器。 氟储存器具有比包覆层或芯层更高的氟浓度。 一个具体实施方案包括包含卤化物掺杂的硅酸盐玻璃的核,其在阳离子加 - 卤化物摩尔百分比为0.25-5摩尔%Al 2 O 3,0.05-1.5摩尔%La 2 O 3,0.0005-0.75摩尔%Er 2 O 3,0.5-6 mol%F,0-1mol%Cl。
Abstract:
The present invention discloses a method of fabricating rare earth-doped preforms for optical fibers. A silica soot is deposited as a layer with high porosity on an inner surface of a silica-based tube by a modified chemical vapor deposition (MCVD) process at a temperature high enough to produce the silica soot but low enough to avoid sintering of the soot into the silica-based tube. The silica-based tube is then immersed in a solution including a rare earth element and a codopant element for impregnation. The excess solution is drained and the silica-based tube is dried in a stream of chlorine and inert gas at an elevated temperature. Then, the rare earth element and the codopant element are oxidized under an oxygen partial pressure at a temperature high enough to overcome kinetic limitations against oxidation. Finally, the soot layer is consolidated while flowing a mixture of chlorides of a second codopant element and oxygen at a sintering temperature at which the second codopant element reacts with oxygen to form codopant oxide which is delivered around the rare earth element oxide deposited in the soot layer. In the method of the current invention, one or more rare earth elements are codoped with preferred codopants including but not limited to Ge, Al, P and/or B to enhance the performance of the rare earth ions. Other dopants may also be used in conjunction with the preferred dopants for modifying the refractive index of the core.
Abstract:
A sintered dense glass, alumina-doped optical fiber preform is stretched and is then heated to a temperature of 1490-1495° C. to remove bubbles without causing crystallization. Thereafter, the stretched glass body is either drawn directly into an optical fiber or overclad and then drawn into a fiber.
Abstract:
An optical fibre for use in fibre lasers has the lasing additive eg Er.sup.3+, concentrated in center of the core. Preferably the core has an inner region which contains the additive and an outer region which is dopant free. The concentration of the dopant reduces the pump threshold for a laser and improves the gain performance for a given pump power. The fibre is conveniently made in MCVD. The use of Al.sub.2 O.sub.3 in the inner zone appears to reduce loss of dopant during tube collapse.
Abstract:
An optical fiber having a core for propagating light, where the core includes first, second and third regions. The first, second and third regions are concentrically arranged with the second region around the first region and the third region around the second region. The third region includes a dopant for increasing the refractive index of the third region. The first region includes a first dopant for providing an amplification band and a second dopant for expanding the amplification band. The second region has an impurity concentration which is lower than the concentration of the dopant in the third region and is lower than the concentrations of the first and second dopants in the first region. Upon production of the fiber, the second region acts as a barrier to prevent diffusion of dopants. As a result, the amplification band can be effectively expanded. Various other arrangements of core and clad regions and dopants are provided. An optical amplifier using the various types of fibers is disclosed, as is a fiber having a structure which reduces loss when spliced to another fiber, and a method for splicing the fibers together.
Abstract:
Optical wave-guides, e.g. fibres, for use as photonic amplifiers have a path region partly or, preferably, wholly composed as a silica/germania glass with 0.1 to 5000 ppm mole of Er.sup.3+ as a lasing additive and alumina to adjust the bandwidth, the Ge:Al mole ratio being more than 2.8, e.g. 1:0.001 to 0.25. It is surprising that low amounts of alumina have a useful and significant effect on the lasing bandwidth whereby frequency division multiplex is facilitated.
Abstract:
In order to fabricate strip monomode active optical waveguides for opticalelecommunications, a layer of vitreous soot is deposited on a substrate and is impregnated with a solution of a precursor of a rare-earth dopant, and a radiation with a wavelength comprised in an absorption band of the dopant is moved along the soot, along a trajectory corresponding to the geometrical shape desired for the guide, thereby forming a vitrified strip.
Abstract:
A process for making an optical reflection grating in a glass fiber includes exposing an unjacketed optic fiber to a single writing pulse from a pair of interfering light beams that form an interference pattern in the fiber. A novel optical fiber has at least one optical grating with a preselected Bragg spacing in at least one region of the fiber, with a periodic modulation in its index of refraction, with high thermal stability and narrow linewidth. A process for making an array of optical reflection gratings in a glass fiber includes exposing a fiber to a plurality of writing pulse from a pair of interfering light beams that form an interference pattern in the fiber, where these pulses are applied sequentially as the fiber is drawn from a draw furnace. A novel optical fiber has a plurality of unspliced gratings with high thermal stability and narrow linewidth.
Abstract:
A method of manufacturing active optical fibers comprising preparing a preform and then drawing a fiber from the preform, wherein the method consists in using a preform having a doped peripheral outer zone, said zone being intended to constitute the outer cladding of the optical fiber, the doping of the peripheral zone giving it a refractive index greater than that of the optical cladding, and giving it a difference in softening temperature relative to that of the core of the optical fiber which is less than the difference that would exist if the outer zone were not doped.
Abstract:
In order to fabricate strip monomode active optical waveguides for optical telecommunications, a layer of vitreous soot is deposited on the interior of a tubular substrate and is impregnated with a solution of a precursor of a rare-earth dopant, and a radiation with a wavelength comprised in an absorption band of the dopant is moved along the soot, along a trajectory corresponding to the geometrical shape desired for the guide, thereby forming a vitrified strip.