Abstract:
Provided is a method for producing an oxime compound with satisfactory selectivity. Provide is a method for producing an oxime represented by the following formula (II): wherein R1 and R2 are respectively the same as defined below, the method including oxidizing an amine represented by the following formula (I): wherein R1 and R2 each independently represents a hydrogen atom, an optionally substituted hydrocarbon group, or an optionally substituted heterocyclic group (provided that R1 and R2 are not simultaneously hydrogen atoms), orR1 and R2, together with the carbon atom to which R1 and R2 are attached, form an optionally substituted alicyclic hydrocarbon group having 3 to 12 carbon atoms [hereinafter sometimes referred to as the amine compound (I)],with oxygen in the presence of a layered silicate.
Abstract:
A method for producing a high purity, high quality amide compound, particularly a lactam. An amount of each of a halide, an aldehyde compound, an alcohol compound and a nitrile compound contained in a solution recycled into an oxime-forming step is controlled to an amount of 0.4 mol% or less based on the ketone as a starting material. One or more of a ketone, an oxime and an amide compound are purified by hydrogenation and/or crystallization for eliminating impurities containing a double bond. A content of impurities having a cyclic bridge structure is controlled using a cycloalkanone purified by recrystallization.
Abstract:
The present invention provides a method for preparing an amide. The method includes the steps of performing in a reactor including a catalyst composition having a nitrogen-containing heterocyclic compound and sulfuric acid Beckman rearrangement of a ketoxime to form a product stream having the amide, wherein a molar ratio of the nitrogen-containing heterocyclic compound to the sulfuric acid is from 1:1 to 1:8; and separating an organic phase having the amide and an aqueous phase having the catalyst composition from the product stream. The present invention facilitates the regeneration of the catalyst composition with low water content, so as to increase the conversion rate of a ketoxime and the selectivity of an amide.
Abstract:
A method for producing a high purity, high quality amide compound, particularly a lactam. An amount of each of a halide, an aldehyde compound, an alcohol compound and a nitrile compound contained in a solution recycled into an oxime-forming step is controlled to an amount of 0.4 mol % or less based on the ketone as a starting material. One or more of a ketone, an oxime and an amide compound are purified by hydrogenation and/or crystallization for eliminating impurities containing a double bond. A content of impurities having a cyclic bridge structure is controlled using a cycloalkanone purified by recrystallization.
Abstract:
Disclosed is a method for producing laurolactam from cyclododecanone and hydroxylamine in a simple process and with high efficiency. The method comprises the following steps (a) to (e): (a) reacting cyclododecanone with hydroxylamine in an aqueous solution in the presence of an excess amount of cyclododecanone or a solvent to produce cyclododecanone oxime; (b) separating the reaction mixture obtained after the oxime-forming step into an oil and an aqueous phases and collecting a solution of cyclododecanone oxime of the oil phase as; (c) removing dissolved water from the solution of cyclododecanone oxime which is collected as an oily phase in the oil/aqueous phase separation step; (d) producing laurolactam from cyclododecanone oxime by rearrangement reaction using an aromatic-ring containing compound as a rearrangement catalyst; and (e) separating the produced laurolactam from the reaction mixture after the rearrangement step and purifying the laurolactam.
Abstract:
This invention relates to a process for producing an amide compound by Beckmann rearrangement of an oxime compound using a compound having at least two electron-withdrawing leaving groups as a rearrangement catalyst, the process comprising a pre-preparation step in which the rearrangement catalyst and at least a part of the oxime compound are mixed and reacted; and a rearrangement reaction step in which the oxime compound is rearranged at a temperature higher than that in the pre-preparation step.
Abstract:
A process produces an amide or lactam by subjecting an oxime compound to rearrangement in a solvent in the presence of: at least one catalyst selected from the group consisting of an aromatic compound (A1) containing a leaving group bound to a carbon atom constituting the aromatic ring, the aromatic ring including, as a constitutive atom thereof, a heteroatom or including, as a constitutive atom thereof, a carbon atom bound to an electron-withdrawing group, and a compound (A2) containing a structure of Formula (1): -G-LA (1) wherein G represents P, N, S, B or Si atom; and LA represents a leaving group, wherein G is bound to one or more atoms or groups in addition to LA; and a co-catalyst including a halogen-containing organic acid, to give the corresponding amide or lactam, wherein, when the aromatic compound (A1) alone is used as the catalyst, the solvent is at least one solvent selected typically from hydrocarbon solvents. The production process can yield amides or lactams simply in high yields without causing large amounts of by-products such as ammonium sulfate.
Abstract:
The present invention relates to a process for producing laurolactam from cyclododecanone oxime by liquid-phase rearrangement reaction using trichlorotriazine as a rearrangement catalyst. The present invention can provide a process which can solve the problem of termination of the reaction at a certain conversion, can prevent an inactive precipitate generated from trichlorotriazine from precipitating in the course of the reaction process, and can remove an inactive precipitate, an active intermediate and a residual catalyst.
Abstract:
The present invention provides a method for preparing amides, in which an amino acid ionic liquid is used as both a reaction medium and a catalyst to catalyze Beckman rearrangement of a ketoxime, so as to produce an amide. In the method, the rearrangement is conducted by catalyzing a ketoxime with an amino acid ionic liquid having the asymmetric property at a moderate reaction temperature during a short reaction time, so as to produce an amide without adding other catalysts such as concentrate sulfuric acid. The method has advantages such as avoiding corrosion in equipments with pipelines, the high conversion rate of ketoximes and the high selectivity of amides.
Abstract:
The invention relates to a process for preparing caprolactam by admixture of cyclohexanone oxime to a reaction mixture comprising caprolactam and sulfuric acid using a mixing device, said mixing device comprising (i) a tube through which the reaction mixture can flow, and (ii) channels disposed around the tube, said channels opening into the tube, said process comprising: passing the reaction mixture through the tube, and feeding the cyclohexanone oxime into the reaction mixture through one or more of said channels, wherein Re>5000, Re being the Reynolds number as defined by ρ·V·D/η, wherein ρ=density (in kg/m3) of the reaction mixture that is fed to the tube V=velocity of the reaction mixture, V being defined as W/A, wherein W is the flow rate (in m3/s) of the reaction mixture that is fed into the tube and A is the cross section area of the tube (in m2) at the level where said channels open into the tube D=diameter of the tube at the level where said channels open into the tube (in m) η=viscosity of the reaction mixture that is fed into the tube (in Pa·s).
Abstract translation:本发明涉及通过使用混合装置将环己酮肟与包含己内酰胺和硫酸的反应混合物混合来制备己内酰胺的方法,所述混合装置包括(i)反应混合物可以流过的管,以及(ii)通道 所述方法包括:使反应混合物通过管,并通过一个或多个所述通道将环己酮肟进料到反应混合物中,其中Re> 5000,Re为雷诺数 其数值由rho.VD / eta定义,其中rho =加入到管中的反应混合物的密度(单位为kg / m 3)V =反应混合物的速度,V定义为 W / A,其中W是供给到管中的反应混合物的流速(以m 3 S / s),A为管的横截面积(m / 2)在所述通道打开到管中的水平面D =在其上的管的直径 所述通道通入管中(以m计)eta =进料到管中的反应混合物的粘度(Pa.s)。