Abstract:
Provided are a formulation which creates protection layers on the metal friction and wear surface and a method for preparing the same. The formulation provided here comprises 45-99 parts laminar hydroxyl silicate powders, 1-50 parts formulation which creates protection layers on the metal surface and method for preparing the same and 0.05-6 parts carbonization-graphitization catalyst, calculated by weight. Also provided is method for preparing the same. The formulation provided here could create a friction-reducing and wear-resistant nanocrystal protection layer in situ on the metal friction and wear surface, at the same time, it has high hardness of cermet and elastic modulus of formulation which creates protection layers on the metal surface and method for preparing the samehigh grade alloy steel. ® KIPO & WIPO 2009
Abstract:
A lubricant additive produced by the process comprising mixing a metal halide with an organophosphate, the metal halide participating as a reactant and reacting the metal halide and the organophosphate to produce a reaction mixture comprising the lubricant additive. Also disclosed is a lubricant produced by the process comprising forming a lubricant additive by reacting metal halide and organophosphate together to form a reaction mixture, the metal halide participating as a reactant, and adding at least a portion of the reaction mixture to a lubricant base.
Abstract:
본 발명에 따른 슬라이딩 피막은 고체 윤활제, 바인더 수지 그리고 저융점 재료를 함유한다. 상기 바인더 수지는 고체 윤활제를 기재(基材)의 표면 위에 유지하기 위한 것으로 유리전이온도를 가진다. 상기 저융점 재료는 상기 바인더 수지의 유리전이온도보다 낮은 융점을 가진다. 상기 저융점 재료는 슬라이딩 부재들 사이에 발생되는 마찰열을 흡수할 수 있는 잠열을 가짐으로 바인더 수지의 열화(劣化)를 지연시킨다. 결과적으로, 상기 슬라이딩 피막은 높은 내눌러붙음성을 만들어낸다.
Abstract:
Disclosed herein are a lubricating composition comprising 5 to 65% by weight of a solid lubricant powder material, 5 to 20% by weight of a lubricating oil which is in a liquid or paste form at an ordinary temperature, 1 to 8% by weight of a carrier for absorbing and possessing said lubricating oil, 10 to 30% by weight of a thermoplastic resin, and 25 to 50% by weight of a thermosetting synthetic resin, and a sliding member comprising a metal substrate and a solid lubricant composed of the lubricating composition.
Abstract:
A lubricant additive for gear oils and an improved gear oil are disclosed. The additive comprises about 0.01 to about 65 percent, by weight, of solid lubricant particles selected from the group consisting of molybdenum disulfide, graphite, cerium fluoride, zinc oxide, tungsten disulfide, mica, boron nitrate, boron nitride, borax, silver sulfate, cadmium iodide, lead iodide, barium fluoride, tin sulfide, fluorinated carbon, PTFE, intercalated graphite, zinc phosphide, zinc phosphate, and mixtures thereof; combined with about 0.1 to about 25 percent, by weight, of a stabilizing agent consisting of an ethylene-propylene copolymer; and a fluid carrier. The lubricant additive provides the gear oil with improved demulsibility, stability, and compatibility characteristics of the gear oil when contaminated with water.
Abstract:
A water-soluble metal-working composition is provided which comprises a relatively large alkoxylated amine, an alkanolamine and an acid-derived compound selected from organic acids, inorganic acids, and salts thereof.
Abstract:
Novel lubricant compositions contain at least one rare earth halide, e.g., cerium trifluoride, and at least one surfactant including a hydrophobic moiety and a hydrophilic moiety, such hydrophilic moiety comprising ethylene oxide and/or propylene oxide units and, optionally, hydrophilic functional groups, dispersed in an oily medium compatible therewith.