Abstract:
A multi-layered component, such as a rocket engine combustion chamber, includes NiAl or NiAl-based alloy as a structural layer on the “hot” side of the component. A second structural layer is formed of material selected from Ni-based superalloys, Co-based alloys, Fe-based alloys, Cu, and Cu-based alloys. The second material is more ductile than the NiAl and imparts increased toughness to the component. The second material is selected to enhance one or more predetermined physical properties of the component. Additional structural layers may be included with the additional material(s) being selected for their impact on physical properties of the component.
Abstract:
A multistage dry pump includes a pump housing having plural pump chambers aligned in parallel, a rotational shaft extending along a parallel alignment direction of the plural pump chambers and rotatably supported by the pump housing, and plural rotors parallelly aligned in an axial direction of the rotational shaft and furnished in the respective plural pump chambers. The rotational shaft is formed with a base material of which linear expansion coefficient is less than 6×10−6 m/m·K inclusive, and the respective plural rotors is made of a material which is more easily machined than the material of the rotational shaft.
Abstract translation:多级干式泵包括:泵壳体,其具有平行排列的多个泵室,沿着多个泵室的平行排列方向延伸并由泵壳体可旋转地支撑的旋转轴,以及沿旋转轴线方向平行排列的多个转子 并设置在相应的多个泵室中。 旋转轴形成有线膨胀系数小于6×10 -6 m / m·K的基材,并且各个转子由比旋转轴的材料更容易加工的材料制成。
Abstract:
A circular disc shape case 11 includes a motor rotor chamber 12, a bearing chamber 13 and a gear chamber 14 piled sequentially and being communicated with each other. A suction port 15 is connected to the motor rotor chamber 12, and a discharge port 16 is connected to the gear chamber 14, which communicate with outside respectively. A rotating shaft 18 having an end positioned in the motor rotor chamber 13 and the other end extending to the gear chamber 14. A rotor 22 is fixed around the rotation shaft 18 in the motor rotor chamber 13. A first bearing 19 is provided for supporting the end of the rotating shaft 18 in radial and thrust directions. A second bearing 20 is provided in the bearing chamber 13 for supporting an intermediate portion of the rotating shaft 18 in radial direction. A trochoid gear 25 is provided in the gear chamber 14, having an outer rotor 26 and an inner rotor 27, which functions as a pump, taking in a fluid through the suction port pipe 15, and discharging the fluid from the discharge port 16.
Abstract:
The invention relates to a hybrid blade (1) for thermal turbomachines, having an airfoil (2) made of a metallic material of a certain density, and having a blade root (3). It is characterized in that the blade root (3), compared with the airfoil (2), is made of a different metallic material having a lower density, and in that the airfoil (20) is connected to the blade root (3) in a positive-locking manner. The blade in this case is advantageously a compressor blade, in particular a high-pressure compressor blade, in which the airfoil (2) is made of a stainless CrNi steel and the blade root (3) is made of a high-temperature titanium alloy or an intermetallic gamma titanium aluminide alloy or an intermetallic orthorhombic titanium aluminide alloy.
Abstract:
In order to make labyrinth seal lips on the periphery of a metal moving part of a turbomachine, a thick layer of refractory material that adheres to the metal is made prior to assembling the moving part, the refractory material advantageously comprising at least one metal selected for example from Fe, Co, and Ni, together with at least one ceramic selected for example from borides, nitrides, carbides, and refractory oxides. The labyrinth seal lips that are to be made are machined to their final dimensions in the deposited thick layer.
Abstract:
A turbine blade has an airfoil section with a root end and a tip end, and an attachment at the root end of the airfoil section. A blade tip seal is joined to the tip end of the airfoil section. The blade tip seal is formed as an open-cell solid aluminum oxide foam made of aluminum oxide cell walls having intracellular volume therebetween. The blade tip seal has a blade interface region adjacent to the tip end of the airfoil section. The blade interface region is formed of the aluminum oxide foam and a nickel-base alloy within the intracellular volume. The blade tip seal also has a contact region remote from the blade interface region and comprising the aluminum foam wherein the intracellular volume is porosity.
Abstract:
A nickel base single crystal compliant layer on a ceramic blade has the capability to sustain high stresses and high operating temperature. Layers of nickel and platinum bonded on a single crystal superalloy over a sputtered gold-chromium layer support the high stress levels at elevated temperature without extrusion of the soft platinum or nickel layer and without destruction of an NiO compliant surface. The compliant layers have survived stress and temperature conditions without failure to the ceramic blade and the system can be stressed/heated and unloaded/cooled repeatedly without damage to the ceramic blades. A single crystal nickel base superalloy (i.e., SC180) has high strength properties at elevated temperature. Thin layers of chromium followed by gold are e-beam evaporated on one side of a polished surface of the alloy. Pure nickel is electroplated over this e-beam gold-chromium layer. Platinum is either electroplated or plated electrolessly over the nickel layer. The structure is annealed in vacuum or inert atmosphere to allow the diffusion of gold-chromium alloy into the superalloy and permit the nickel layer and diffusion of nickel into platinum to form a multilayer structure which is metallurgically bonded. The sheet is oxidized in air to allow diffusion of the nickel layer through the platinum to come to the surface and oxidize forming nickel oxide. This nickel oxide layer acts as the load distribution layer which does not extrude and the structural integrity of the compliant layer is maintained by the high-strength single crystal superalloy.
Abstract:
A hybrid rotor, a manufacturing method thereof and a gas turbine realize reduced manufacturing cost and reduced weight of parts. An impeller part 31 as a rotor main part comprises a bore portion 32, impellers 34 provided therearound and a shaft bore 33 provided centrally of the bore portion 32. An enlarged shaft bore portion 35 is coaxially provided in the shaft bore 33. The impeller part 31 is made of Ti or Ni alloy by precision casting. A ring member 10 made of a metal base composite material is inserted into the enlarged shaft bore portion 35 and is bonded together by friction bonding or diffusion bonding to thereby strengthen the rotor. The rotor main part is manufactured by precision casting without need of machining. The ring member 10 is separately manufactured from the impeller part 11. By strengthening the rotor, the bore portion 32 can be made thin. Thus, manufacturing cost is remarkably reduced and weight of the rotor is also reduced.
Abstract:
A corrosion resistant piston for use in an exhaust gas recirculation diesel engine. The piston includes a crown portion having ring grooves formed around a periphery of the crown portion. The ring grooves are separated by ring lands. The piston also includes a piston rod connecting portion that extends from the crown portion. The piston is made of steel and includes an electroless coating of nickel having a maximum thickness of 8 micrometers.
Abstract:
An airfoil having a melting temperature of at least about 1500null C. and comprising a first piece and a second piece joined by a braze to the first piece. The first piece comprises one of a first niobium-based refractory metal intermetallic composite and a first-based refractory metal intermetallic composite, and the second piece comprises one of a second niobium-based refractory metal intermetallic composite and a second molybdenum-based refractory metal intermetallic composite. The braze joining the first piece to the second piece is a semi-solid braze that comprises a first component and a second component. The first component of the semi-solid braze comprises a first element and a second metallic element, wherein the first element is one of titanium, palladium, zirconium, niobium, germanium, silicon, and hafnium, and the second metallic element is a metal selected from the group consisting of titanium, palladium, zirconium, niobium, hafnium, aluminum, chromium, vanadium, platinum, gold, iron, nickel, and cobalt, the second metallic element being different from the first element. The second component has a melting temperature of at least about 1450null C. and comprises one of niobium, molybdenum, titanium, hafnium, silicon, boron, aluminum, tantalum, germanium, vanadium, tungsten, zirconium, and chromium. This abstract is submitted in compliance with 37 C.F.R. 1.72(b) with the understanding that it will not be used to interpret or limit the scope of or meaning of the claims.