Abstract:
Support assemblies for attaching the walls and top of a semi-membrane tank to surrounding support structure include interlocked angled sliding surfaces, whereby movement perpendicular to the walls and top is permitted as well as movement along one line or two perpendicular lines parallel to the tank sides and top. Arrayed on the surfaces of the walls and tops, these support assemblies provide the necessary support for the tank walls and top while minimizes thermal stresses in the tank. Support systems comprising such arrays, surrounding support structure, and tank insulation can be assembled outside a ship and engagingly lowered into a compartment therein, facilitating construction.
Abstract:
The invention relates to a fibre-reinforced pressure vessel (1, 6) comprising a rigid gas- or fluid-tight body (2, 7, 13, 19) overwound with fibre filaments (3, 10, 11, 18), whereby the fibre filaments are wound such that at least a number of fibre filaments can freely move in respect of one another and when the pressure vessel is under internal pressure the fibre filaments are strained exactly in their longitudinal direction. The invention also relates to a method of manufacturing a fibre-reinforced pressure vessel whereby no matrix material (for example, resin) is used so that at least a number of fibre filaments would be incorporated in a matrix for that section of the pressure vessel in which the fibre filaments can freely move in respect of one another.
Abstract:
The invention relates to composite pressurizable structures which are overwound with fibres or are braided. The pressurizable structures comprise axial sections which in turn comprise both concave and convex surfaces. The shape characteristics are related to geodesic as well as non-geodesic trajectories in regard of the fibres. Axial sections of the pressurizable structures can be rotated, expanded or bended with respect to the longitudinal axis of the pressurizable structure. Examples of uses of the pressurizable structure relate to pressure vessels and flexible pipelines, spring elements, robotic actuators and adaptable buildings. In another aspect, the invention relates to a method of production by means of braiding, which in principle allows for the construction of very large structures.
Abstract:
A pressurized gas supply system includes a pressurized container which expands and contracts. The container includes a one-piece liner molded from a polymer which is reinforced by a high tensile fiber such as KEVLAR®. A valve is molded into the liner, and a regulator is connected to the valve. A hose, having a conserver positioned therealong, extends between the regulator and a fitting allowing a user to inhale gas from the container. The container is carried in a carrying bag, which can be in the form of a carrying case, a purse, or a back-pack.
Abstract:
An electrochemically active hydrogen diffusion barrier which comprises an anode layer, a cathode layer, and an intermediate electrolyte layer, which is conductive to protons and substantially impermeable to hydrogen. A catalytic metal present in or adjacent to the anode layer catalyzes an electrochemical reaction that converts any hydrogen that diffuses through the electrolyte layer to protons and electrons. The protons and electrons are transported to the cathode layer and reacted to form hydrogen. The hydrogen diffusion barrier is applied to a polymeric substrate used in a storage tank to store hydrogen under high pressure. A storage tank equipped with the electrochemically active hydrogen diffusion barrier, a method of fabricating the storage tank, and a method of preventing hydrogen from diffusing out of a storage tank are also disclosed.
Abstract:
The invention relates to a fibre-reinforced pressure vessel (1, 6) comprising a rigid gas- of fluid-tight body (2, 7, 13, 19) overwound with fibre filaments (3, 10,11, 18), whereby the fibre filaments are wound such that at least a number of fibre filaments can freely move with respect to one another and when the pressure vessel is under internal pressure the fibre filaments are loaded exactly in their longitudinal direction. The invention also relates to a method of manufacturing a fibre-reinforced pressure vessel whereby no matrix material (for example, resin) is used so that at least a number of fibre filaments would be incorporated in a matrix for that section of the pressure vessel in which the fibre filaments can freely move with respect to one another.
Abstract:
A cellular reservoir flexible pressure vessel is formed as a series of closely packed tubes fitted into a pair of opposing end caps. The end caps have individual receptacles sized and shaped to receive the tube ends that are secured with adhesive or radio frequency welding. At least one end cap has a passageway for connection of the vessel. The vessel may be formed in a variety of useful shapes and the tubes may have various internal and external cross-sections. The end caps may be filled with sintactic foam with canals leading to the passageway. Microtubes through the syntactic foam may connect the tubes to the passageway. The vessel is further strengthened by overwrapping with high-strength braiding material, hoop winding or by overlayment with high-strength fabric. The vessel is further strengthened by coating with plastic resin. Apparatus and methods for forming the cellular reservoir flexible vessels are described.
Abstract:
A cellular reservoir flexible pressure vessel is formed as a series of closely packed tubes fitted into a pair of opposing end caps. The end caps have individual receptacles sized and shaped to receive the tube ends that are secured with adhesive or radio frequency welding. At least one end cap has a passageway for connection of the vessel. The flexible pressure vessel has a pressure relief device comprising a reduction in thickness of one end cap at a predetermined location. When subjected to overpressure it fails at the predetermined location. Other pressure relief devices include: a projecting member on the vessel surface, a weakened section of the passageway, a weakening or an absence of braiding material or hoop winding at a predetermined location on the vessel surface or along the passageway, a weakening or spreading of fibers in either the reinforcing panels or the flexible blankets covering the vessel.
Abstract:
An ovoid flexible pressure vessel is described. At least one hollow pressure cell, formed of resilient material, a passageway, a valving means, a capillary tube, hoop winding, high-strength braiding material and at least one reinforcing ring are provided. The ovoid flexible pressure vessel has a pressure relief device comprising a reduction in thickness of the hollow pressure cell at a predetermined location whereby, when the hollow pressure cell is subjected to an overpressure condition it will fail at the predetermined location. Further pressure release devices include the following: a reduction in thickness of the cell, an indentation, a projecting member, a weakened section of the passageway, a weakening or an absence of high-strength braiding material or hoop winding at a predetermined location along the passageway, a weakening or spreading of fibers in either of the reinforcing panels or in either flexible blankets.
Abstract:
A storage container for cryogenic liquids has an outer container and at least one inner container, an insulation space being situated between the outer container and the inner container or containers. The outer container and/or the inner container have devices for strengthening the container walls. The devices for strengthening the container wall of the outer container and/or of the inner container are constructed as at least one web arranged on the container wall of the outer container and/or of the inner container and/or as at least one supporting plate adapted essentially to the cross-section of the inner container.