Abstract:
First and second motors have structures different from each other. A control device estimates a first magnet temperature of the first motor and a second magnet temperature of the second motor and controls a drive unit based on the first and second magnet temperatures. The control device estimates the first magnet temperature using a first parameter (the temperature of cooling oil of the first and second motors) and estimates the second magnet temperature using the temperature of the stator of the second motor. Since an appropriate parameter is selected from among a plurality of parameters concerning the state of the first and second motors, the first and second magnet temperatures can be estimated more accurately.
Abstract:
A voltage command value of a converter is set by executing the step of determining a candidate voltage of a system voltage VH as a converter output voltage in a voltage range from the minimum necessary voltage corresponding to induction voltage of a motor generator and a maximum output voltage of the converter; the step of estimating power loss at the battery, converter, inverter and motor generator, at each candidate voltage, and calculating total sum of estimated power loss of the overall system; and the step of setting the voltage command value VH# based on the candidate voltage that minimizes the total sum of estimated power losses among the candidate voltages.
Abstract:
A propulsion system is provided that includes an electric drive, a first energy storage system electrically coupled to the electric drive through a direct current (DC) link, and a second energy storage system electrically coupled to the electric drive. The propulsion system further includes a multi-channel bi-directional boost converter coupled to the first energy storage system and to the second energy storage system such that the second energy storage system is decouplable from the DC link, wherein the second energy storage system comprises at least one battery coupled in series with at least one ultracapacitor.
Abstract:
In the rectangular-wave voltage control mode, torque feedback control, in which the voltage phase of the rectangular-wave voltage is adjusted based on the deviation of the torque estimated value from the torque command value, is performed. A torque estimation portion calculates the torque estimated value using the motor currents calculated based on the values detected by a current sensor and a rotational position sensor, as in the case of the PWM control mode. Namely, the same state quantity (quantity detected by the sensors) of the alternating-current motor is used in the motor control in both the rectangular-wave voltage control mode and the PWM control mode.
Abstract:
A vehicle (100) includes a motor generator (MG) and an inverter (14) driving the motor generator (MG). A power source apparatus for the vehicle includes a battery (B) as an electric storage device, a step-up converter (12) stepping up a voltage of the electric storage device and supplying it to the inverter, and a controller (30) indicating a target step-up voltage in accordance with a target state of operation of the motor generator (MG) to the step-up converter (12). If it is determined that a current operation state signal of the motor generator (MG) is abnormal, the controller (30) increases the target step-up voltage to a maximum value. Preferably, the vehicle (100) further includes a resolver (20) detecting rotation speed of a rotor of motor generator (MG). The controller (30) determines that the operation state signal is abnormal if an output of the resolver (20) does not satisfy a prescribed condition.
Abstract:
A power supply system for driving a vehicle includes a battery, a boost converter boosting the voltage of the battery, a capacitor to which the voltage boosted by the boost converter is applied across the electrodes, system main relays provided between the capacitor and the output of the boost converter for connection and disconnection between the capacitor and the boost converter, and a control device controlling the boost converter and the system main relays. The control device, after giving an instruction for disconnection to the system main relays, causes the boost converter to change the voltage of the output to determine whether the system main relays are normally disconnected.
Abstract:
The present invention is directed to a control strategy for operating a plurality of prime power sources during propulsion, idling and braking and is applicable to large systems such as trucks, ships, cranes and locomotives utilizing diesel engines, gas turbine engines, other types of internal combustion engines, fuel cells or combinations of these that require substantial power and low emissions utilizing multiple power plant combinations. The present invention is directed at a general control strategy for multi power plant systems where the power systems need not be of the same type or power rating and may even use different fuels. The invention is based on a common DC bus electrical architecture so that prime power sources need not be synchronized.
Abstract:
A maximum value selection unit (50) receives battery voltage values (Vb1, Vb2) and outputs the maximum value thereof to a lower limit value limiting unit (54). A maximum value selection unit (52) receives required voltage values (Vm1*, Vm2*) and outputs the maximum value thereof to the lower limit value limiting unit (54). The lower limit value limiting unit (54) outputs a voltage reference value (Vh*) by limiting the value so as not to fall below an output value of the maximum value selection unit (50). Switching commands (PWC1, PWC2) are generated based on a control computation using a combination of a voltage feedback control element and a voltage feedforward element, and a control computation using a combination of a current feedback control element and a voltage feedforward element, respectively.
Abstract:
An ECU estimates an output allowable power of a power storage device based on the temperature and SOC of the power storage device. The ECU also calculates a threshold power based on the power required to start an engine. When the ECU determines that the output allowable power is lower than the threshold power, the up-converter is controlled such that the boosting rate of the up-converter is restricted to be below a prescribed value.
Abstract:
The present invention is directed to a control strategy for operating a plurality of prune power sources (101-1 to 101-3) during propulsion, idling and braking and is applicable to large systems such as trucks, ships, cranes and locomotives utilizing diesel engines, gas turbine engines, other types of internal combustion engines, fuel cells or combinations of these that require substantial power and low emissions utilizing multiple power plant combinations The present invention is directed at a general control strategy for a multi-engine systems (101-1, 101-2) where the power systems need not be of the same type or power rating and may even use different fuels The invention is based on a common DC bus (103) electrical architecture so that prime power sources need not be synchronized