Abstract:
PROBLEM TO BE SOLVED: To accommodate lateral and angular misalignment between a robot and a docking station.SOLUTION: A robotic system comprises a mobile robot including a body housing a rechargeable power source and first electrical contact means disposed on the bottom side of the body, and a docking station including second electrical contact means. The mobile robot is dockable with the docking station in order to charge the rechargeable power source. The first electrical contact means includes at least one electrical contact aligned on a first contact axis, and the second electrical contact means includes an elongate electrical contact extending in a direction transverse to the first contact axis. When the robot is docked with the docking station, the elongate electrical contact accommodates lateral and angular misalignment to establish electrical contact between the robot and the docking station.
Abstract:
A cleaning robot that discharges, upwards and from an exhaust port (7), airflow having dust removed therefrom, and comprises: a main case (2) having a suction port (6) opened in the bottom surface thereof and the exhaust port (7) opened in the upper surface thereof, and that is self-propelled on a floor surface (F); an electric fan (22) arranged inside the main case (2); and a dust collection unit (30) that collects dust in airflow sucked in from the suction port (6) by the driving force of the electric fan (22).
Abstract:
A method of charging a battery of a device (40), the method comprising the steps of: providing a non-charging energy to charging terminals (16) of a charger (10); detecting a presence of a robotic device (40) docked with the charger (10) by recognizing a load formed by a circuit in the charger (10) combined with a complementary circuit in the robotic device (40); and increasing energy to the charging terminals (16) to a charging current to charge the battery.
Abstract:
A method of navigating a self-propelled robotic tool comprises transmitting a wireless signal (66) along a first signal path between the robotic tool (14) and a first wireless interface of a base station (16) remote from the robotic tool (14); transmitting a wireless signal (66) along a second signal path between the robotic tool (14) and a second wireless interface of the base station (16), said second wireless interface being spatially separated from the first wireless interface by a separation distance; upon receipt, comparing the signal transmitted along the first signal path with the signal transmitted along the second signal path to obtain a propagation time difference between the signal transmitted along the first signal path and the signal transmitted along the second signal path, said propagation time difference defining a path length difference between said first and second signal paths; and calculating, based on the separation distance and the path length difference, a value representative of a bearing ( φ) from the base station (16) to the robotic tool (14).
Abstract:
Die Erfindung betrifft ein Verfahren zum Andocken eines selbstfahrenden und selbstlenkenden Bodenbearbeitungsgerätes an einer Basisstation, wobei mit zwei oder mehr Sendeelementen der Basisstation ein jeweiliges, in einem je- weiligen Signalbereich räumlich ausgedehntes Andocksignal ausgesendet wird, wobei die Signalbereiche abschnittsweise überlappen und die Andocksignale unterschiedliche Signalcharakteristik aufweisen, und wobei die Andocksignale von einer Empfangseinrichtung des Bodenbearbeitungsgerätes empfangen und von einer Steuereinheit des Bodenbearbeitungsgerätes analysiert werden. Um ein derartiges Verfahren bereitzustellen, das ein einfaches und zuverlässiges Andocken des Bodenbearbeitungsgerätes an der Basisstation ermöglicht, wird erfindungsgemäß vorgeschlagen, dass mit der Steuereinheit die Ist-Position des Bodenbearbeitungsgerätes relativ zur Basisstation unter Einbeziehung der unterschiedlichen Signalcharakteristik berechnet wird, ein Fahrweg des Bo- denbearbeitungsgerätes von der Ist-Position zu einem charakteristischen Ziel- bereich in vorgegebener oder vorgebbarer Relativposition zur Basisstation er- mittelt und das Bodenbearbeitungsgerät zu dem charakteristischen Zielbereich verfahren wird, ausgehend von dem das Bodenbearbeitungsgerät in eine An- dockstellung an der Basisstation verfahren wird. Außerdem betrifft die Erfin- dung ein Bodenbearbeitungssystem zur Durchführung des Verfahrens.
Abstract:
본체에 설치되고, 주변의 물체를 감지하여 감지 정보를 출력하는 3D 센서 유닛; 주변의 물체를 감지하여 감지 정보를 출력하는 보조 센서 유닛; 진단 모드에 따른 진단 알고리즘이 미리 설정된 저장 유닛; 상기 진단 모드의 실행 명령을 입력받는 입력 유닛; 상기 실행 명령에 따라 상기 진단 알고리즘을 이용하여 상기 3D 센서에 대한 진단 모드 및 상기 3D 센서 유닛의 파라미터를 교정하는 제어 유닛; 및 상기 진단 모드의 실행 결과 및 교정 메시지를 출력하는 출력 유닛을 포함하여 구성되는 로봇 청소기가 제공된다.
Abstract:
A robotic work tool system (200), comprising a charging station (210), a boundary wire (250) and a signal generator (240) for generating and transmitting a signal through said boundary wire (250) for demarcating a work area (205), said robotic work tool system (200) further comprising a robotic work tool (100) configured to detect a magnetic field strength (M1, M2) in the work area (205) and said robotic work tool system (200) being configured to adapt a current level of the signal being transmitted through the boundary wire (250) based on the detected magnetic field strength (M1, M2).
Abstract:
A docking station (6) for a mobile robot (4) comprising a base portion (60) that is locatable on a floor surface and a rear portion (62) that is pivotable with respect to the base portion (60), thereby permitting a user to place the docking station (6) on the floor in an unfolded configuration but to store the docking station (6) in a folded configuration.