Abstract:
An engine variable valve timing mechanism is controlled during engine starting to set valve opening overlap of intake and exhaust valves around 30° CA. In this case, internal EGR is actively conducted, fuel burning velocity within a cylinder becomes relatively slow and unburned fuel within the cylinder is emitted to an exhaust pipe to be post-burned. The temperature of exhaust gas is maintained high and catalyst converters in the cold state may be activated quickly by actively implementing such post-burning within the exhaust pipe. Further, ignition timing is retarded, the air-fuel ratio is controlled to a slightly lean ratio and the exhaust valve is advanced. The effect of raising the temperature of exhaust gas by post-burning may be realized more reliably by combining each of these controls.
Abstract:
A control system for an internal combustion engine which can judge and detect a failure of a valve timing changing unit regardless of operating conditions. The system includes a second storage unit 9 for storing the detection value of an actual valve timing detection unit 2 when the target advance angle set by a target advance angle setting device 3 is a predetermined value and updating the storage value, a storage value update inhibiting unit 10 for inhibiting the update of the storage value of the second storage unit when a change in the storage value updated by a first storage unit 4 is larger than a predetermined value, and failure judging unit 8A for judging a failure of the valve timing changing unit based on the target advance angle set, the detection value of the actual valve timing detection unit and the storage value of the second storage unit.
Abstract:
Motion recognition processes are disclosed, in particular for regulating the impact speed of an armature on an electromagnetic actuator with at least one electromagnet having at least one pole face (4) and connected to a controllable power supply, and with an armature (5) connected to a regulating element to be actuated which when power is supplied to the electromagnet, is moved against the force of a restoring spring (7) in the direction of the pole face of the electromagnet from a first switching position to a second switching position in which it stops against the pole face. At least one sensor (11) detects in a defined air gap zone of the pole face a progressive attenuation of the magnetic field as the armature approaches and generates a corresponding signal.
Abstract:
An ECU calculates an actual relative rotational angle in a VVT based on a crank angle signal sent from a crank position sensor and a cam angle signal sent from a cam position sensor. Furthermore, the ECU calculates a fundamental target relative rotational angle based on engine operating conditions. The fundamental target relative rotational angle is corrected by a factor responsive to the change of the air-fuel ratio. Thus, a control rotational angle fed to the VVT varies in accordance with the change of the air-fuel ratio so as to stabilize the combustion and improve the power output characteristics.
Abstract:
A drive system composed of an engine and a transmission is controlled in accordance with a desired wheel toque corresponding to a position of an accelerator, and a present vehicle speed in such a way that a speed ratio of the transmission is determined in consideration with torque factors such as an air-fuel ratio on the engine side, thereby it possible to optimize the control in order to reduce the emission of exhaust substance such as NOx and to enhance the acceleration performance and the fuel economy.
Abstract:
A valve timing control apparatus for an internal combustion engine includes a variable valve timing control mechanism of a hydraulic type which is provided in a drive force transmission arrangement for transmitting a drive force from a driving shaft to a driven shaft for actuating one of an engine-cylinder inlet valve and an engine-cylinder outlet valve, and which can relatively rotate one of the driving shaft and the driven shaft in a predetermined angular range. A detecting device operates for detecting a condition in which air enters hydraulic working fluid in the variable valve timing control mechanism. A trouble diagnosis device operates for implementing a trouble diagnosis on the variable valve timing control mechanism. An inhibiting device operates for inhibiting the trouble diagnosis implemented by the trouble diagnosis device when the detecting device detects the condition in which air enters hydraulic working fluid in the variable valve timing control mechanism.
Abstract:
A method of controlling an internal combustion engine includes mechanism including an intake valve and an exhaust valve provided respectively to an intake port and an exhaust port of a cylinder of the internal combustion engine, a valve mechanism control means for controlling said valve mechanism, an operation condition detection for detecting an operation condition of the internal combustion engine, and a throttle valve for controlling an intake amount in response to an operation amount of an acceleration pedal. When the method of the internal combustion engine, wherein when the operation condition detector judges as a low load or a middle load of the operation condition of the internal combustion engine, the throttle valve is controlled to a high opening degree condition regardless of the operation amount of the acceleration pedal, and by controlling a valve closing timing and/or a valve lift amount of the intake valve, the intake amount is controlled. A pumping loss during a low and a middle load conditions can be reduced widely, a fuel consumption can be improved and further during a high load condition knocking can be prevented.
Abstract:
In a valve timing control for an engine having an electronic throttle control system, the response of a valve timing control mechanism is estimated by operating condition of the engine. In addition to controlling a relative rotation angle of the VVT, a throttle correction gain for correcting the opening angle of a throttle valve so as to be adapted to the response of the VVT is calculated. The throttle valve is controlled by the calculated gain. When the response of the VVT is slow, the opening angle of the throttle valve is corrected on the basis of the response. Thus, a rapid engine acceleration is suppressed, thereby preventing occurrence of misfire.
Abstract:
Electronic controls for compression release engine retarders of internal combustion engines which provide electronic signals to control hydraulic valves assembled in the hydraulic actuators of the retarders, to open engine exhaust valves to provide compression release events. The electronic controls may produce signals for both opening and/or closing the controlled valves. The electronic controls may monitor various engine operating conditions and/or parameters with one or more sensors distributed in the engine and vehicle in which the engine is installed. The timing of valve actuation, particularly that for compression release events, can be automatically modified responsive to the level of engine operating conditions and parameters. Various operating routines for the electronic controls are also disclosed.
Abstract:
An engine drive torque controller has a first mode in which torque is controlled by varying air-fuel ratio within a range greater than stoichiometric and a second mode in which torque is controlled while maintaining a substantially fixed air-fuel ratio. The control modes are selected to keep nitrogen oxide emissions low. The torque controller also changes the air-fuel ratio during transmission shifting to prevent variations in torque.