Abstract:
An optical characteristic measuring apparatus and an optical characteristic measuring method of the invention are an optical characteristic measuring apparatus and method for obtaining a predetermined optical characteristic such as a color value or a total spectral radiation factor of a measurement object. A spectral intensity distribution of predetermined ambient light entering through a measurement opening is measured and stored prior to measurement of the optical characteristic. In measuring the optical characteristic, an optical characteristic in a condition that actually measured ambient light is used as an observation light source is obtained, with use of the stored spectral intensity distribution of ambient light.
Abstract:
Systems, methods, and apparatuses of low-coherence enhanced backscattering spectroscopy are described within this application. One embodiment includes providing incident light comprising at least one spectral component having low coherence, wherein the incident light is to be illuminated on a target object in vivo. An intensity of one or more of at least one spectral component and at least one angular component of backscattering angle of backscattered light is recorded, wherein the backscattered light is to be backscattered from illumination of the incident light on the target object and wherein the backscattering angle is an angle between incident light propagation direction and backscattered light propagation direction. The intensity of the at least one spectral component and the at least one backscattering angle of backscattered light is analyzed, to obtain one or more optical markers of the backscattered light, toward evaluating said properties.
Abstract:
The disclosure relates generally to methods and apparatus for using a fiber array spectral translator-based ('FAST') spectroscopic system for improved imaging, spectral analysis, and interactive probing of a sample. In an embodiment, the confocality of a fiber array spectral translator-based spectroscopic system is improved through the use of structured illumination and/or structured collection of photons. User input may be received and acted upon to allow a user to interactively in real time and/or near real time view and analyze specific regions of the sample.
Abstract:
The present invention relates to systems of methods of measuring selected analytes in blood and tissue using Raman spectroscopy to aid in diagnosis. More particularly, Raman spectra are collected and analyzed to measure the concentration of dissolved gases and other analytes of interest in blood. Methods include in vivo transdermal and continuous monitoring as well as in vitro blood analysis. Furthermore, a compound parabolic concentrator to increase the amount of detected Raman signal is disclosed.
Abstract:
A reflectometer (10) for measuring absorption of light in selected regions of the light spectrum by a diffuse reflector. The reflectometer (10) is adapted to precisely measure absorption resulting from the constituents present in body fluids. The sample (30) to be measured is illuminated by a focused light source (120) at an angle of 45° to its surface. The light diffusely reflected about the normal to the sample (30) falls on a small round bundle (200), the fibers are arranged into a narrow rectangle. This rectangle forms the entrance slit (230) for a concave holographic diffraction grating (230) spectrally separated over a flat field suitable for recording the spectrum on film or on an array of discrete detectors.
Abstract:
Die Beleuchtungsvorrichtung zur spektroskopischen Beobachtung von Minerialien, Juwelen o.dgl., bei der das Prüfstück durch eine Weisslichtquelle beleuchtet wird, umfasst erfindungsgemäss wenigstens eine Lichtleitfaser (22), um das durch das Prüfstück geflossene Beleuchtungslicht einem Beobachtungs-Spektroskop (30) zuzuleiten.