Abstract:
An apparatus for detection of the existence of a film on a surface comprises a lens, a light emitter and a light sensor. The light emitter is preferably disposed in spaced relation to the lens and is configured to emit light toward the lens such that the light is incident thereupon. The light sensor is also preferably disposed in spaced relation to the lens and is mounted adjacent to the light emitter. The light sensor is configured to measure light reflected back from the lens. The presence or absence on the film on the surface is based upon the amount (i.e., intensity) of light that is reflected back from the lens. The apparatus may further comprise a temperature sensor or atmospheric sensor for measuring a temperature of the lens and atmospheric conditions in order to determine whether conditions are appropriate for the formation of ice, frost and other frozen contaminants.
Abstract:
The invention relates to a device for inspecting eggs for the presence of blood. The device comprises a light source in order to pass light at a first wavelength which is not selectively absorbed by blood and light at a second wavelength which is selectively absorbed by blood through an egg to be inspected. Furthermore, the device comprises detection means for converting the light transmission through the egg to be inspected for each of the two wavelengths into corresponding signals, each of the said signals being representative of the light transmission at the relevant wavelength. The device also comprises signal-processing means which are transmission associated with the first wavelength and the light transmission associated with the second wavelength based on the signals emanating from the detection means and to emit a decision signal which is representative of the decision whether or not an egg contains blood on the basis of this ratio. According to the invention, the light source comprises one or more identical LED's (Light Emitting Diode) for generating light which passes through the egg. In use the one or more LED's emit light within a certain narrow spectrum, which spectrum comprises both the first and the second wavelength.
Abstract:
Methods and optical systems for scanning of a target sample, including methods and systems using a low mass scan head. The present invention also relates to methods and systems for performing sample assays, and for producing and measuring optical responses and signatures.
Abstract:
A body fluid constituents measurement device, which performs measurement under a setting where light intensity of the light-emitting element is suitably stabilized, is provided. The present invention is a body fluid constituents measurement device which comprises: a light-emitting element that emits light onto a test paper onto which body fluid is spotted, a light receiving element which receives reflected light of the light emitted by said light-emitting element, a temperature measurement unit which measures the ambient temperature in the vicinity of said light-emitting element, a determination unit which determines conditions of light emission based on said temperature measured at said temperature measurement unit in order to stabilize light intensity of said light-emitting element, and a driving control unit which controls driving of said light-emitting element based on the conditions of light emission; and is characterized in that it starts measurement of body fluid constituents after the light intensity of light emitted by said light-emitting element has been stabilized.
Abstract:
A transmission concentration device capable of reducing environmental temperature effect comprises mainly a concentration detector arranged in the fluid communication space of a fluid circulating apparatus in a fuel cell system where the fluid temperature in the concentration detector and the fuel cell is equal to help minimize measurement error brought about by the effect of environmental temperature.
Abstract:
A defect inspecting apparatus of the invention solves a problem that in a defect inspecting apparatus, because of improving detection sensitivity of a microscopic defect by reducing a detection pixel size, a focal depth becomes shallow, a height of imaging is varied due to environmental change and the detection sensitivity of a defect becomes unstable. This apparatus comprises an XY stage, which carries a substrate to be inspected and scans in a predetermined direction, and a mechanism having a system of irradiating a defect on the inspected substrate at a slant and detecting the defect by a detection optical system disposed on the upper side, which corrects a height of imaging in real time for change in temperature and barometric pressure in order to keep the imaging in a best condition.
Abstract:
The invention concerns a gas analyzer comprising: a measuring volume (2), a radiation source (1) for providing a beam to pass said measuring volume; a heat sink (16) for said radiation source; at least one thermal detector (3) having a hot junction within a support structure and receiving the radiation and a cold junction for reference within the same support structure and protected from said radiation; at least one optical bandpass filter (9) between said hot junction and said radiation source; and a thermal mass (11), which is formed of a material having high thermal conductance. The thermal mass has a cavity with a bottom step (34) and a rim (32), and a first length therebetween. The support structure has a frontal edge (35) and a base plate lip (33), and a second length therebetween. There is a radial gap between the thermal mass and the support structure. Press means urge said support structure in the cavity, whereupon a more efficient thermal contact is either between said frontal edge and said bottom step, or between said base plate lip and said rim. A first thermal barrier (17) is between the heat sink and the thermal mass, and a second thermal barrier (22) surrounds the thermal mass. A shield (19) formed of a material having high thermal conductance covers said second thermal barrier and is in thermal contact with said heat sink.
Abstract:
A system is provided that includes a light-emitting diode (LED); a temperature sensor in thermal contact with the LED and capable of measuring an operating temperature and generating an operating temperature signal; and a temperature regulating system capable of receiving the operating temperature signal and regulating the operating temperature based on the operating temperature signal. A method for stabilizing the temperature of an LED is provided. A method is provided that includes providing a system comprising an LED, a reaction region, and a sample in the reaction region; generating excitation beams with the LED; directing excitation beams to the sample; detecting an optical property of the sample to obtain detection data; measuring the operating temperature of the light emitting diode; and adjusting the detection data of an excitation beam characteristic shift related to the operating temperature, when the LED is operated at the operating temperature to generate the excitation beams.
Abstract:
A gas sensor, whose chamber uses filters and choppers in either a semicircular geometry or annular geometry, and incorporates separate infrared radiation filters and optical choppers. This configuration facilitates the use of a single infrared radiation source and a single detector for infrared measurements at two wavelengths, such that measurement errors may be compensated.
Abstract:
A thermoelectrically cooled surface-enhanced Raman spectrometer sensor system and method for monitoring of volatile organic compounds in gas, liquid, and soil environments. The sensor system comprises a means for providing an inert gas, a thermal desorption tube containing an adsorbate, and a sample chamber with a SERS structure. For liquid and soil environments, the sensor system also comprises a manifold having a semipermeable membrane for separating moisture from an analyte. An optical module mounted to the sample chamber directs an optical excitation signal for irradiating the SERS structure and receives a SERS optical emissions signal. Such optical emissions signal may be detected by a spectroanalysis system and correlated to a particular analyte by a control processor, which generates an alert signal containing a message that the presence of analyte has been detected. The control processor may also activate warning device, such as an audible siren or a visual alarm.