Abstract:
A current is supplied from a power source voltage supply node of a power source voltage to an open-collector of a transistor through a current blocking circuit, connectors and a signal transmission line. A microcomputer regulates a resistance value of a pull-up resistor by switching over an on/off state of a switch circuit in accordance with the power source voltage detected by a power source voltage detection circuit. The microcomputer thus regulates a current blocking rate of the current blocking circuit.
Abstract:
A control sub-system for controlling an electric machine is presented. The control sub-system includes a phase shift control unit to receive an electric signal indicative of an angular position of a rotor. The phase shift control unit generates a phase shifted electric signal by applying a phase shift to the electric signal. The magnitude of the phase shift is determined based on a speed control signal. The phase shift control unit is configured to generate a phase command signal based on the phase shifted electric signal. The control sub-system also includes a switching unit to control a supply of a phase current to one or more phase windings the electric machine based on the phase command signal such that the rotor is operated at a predetermined rotational speed. Related method of controlling the electric machine is also presented.
Abstract:
A drive system with energy store and method for operating a drive system, an inverter powering an electric motor, the inverter being supplied from a unipolar DC-link voltage, an energy store being connected in parallel to the inverter, in particular, a film capacitor being connected in parallel to the inverter, the DC-link voltage being generated by a DC/DC converter which is supplied from an AC/DC converter, especially a rectifier, in particular, an electric current being able to be supplied to the DC link by the DC/DC converter.
Abstract:
An electric motor drive apparatus includes: an AC/DC converter converting AC into DC by the switching of multiple power devices; a control circuit performing PWM switching control of the multiple power devices; a current detecting circuit that detects input current from the AC power supply to the AC/DC converter; an electromagnetic contactor connecting or cutting off power from the AC power supply to the AC converter; and a DC link unit including a smoothing capacitor for smoothing DC voltage, and is constructed such that the control circuit determines that the electromagnetic contactor has been welded when input current is detected in a condition where with the DC link unit having been charged, the electromagnetic contactor is turned off to cut off the power from the AC power supply to the AC/DC converter and the multiple power devices are controlled by PWM switching in accordance with the switching commands.
Abstract:
A motor driving device includes, a PWM converter that performs power conversion between AC power and DC power in a DC link, an inverter that converts the DC power in the DC link to AC power for a motor and that converts the AC power from the motor to DC power for returning to the DC link, a power storage unit that stores the DC power, a switch that connects or disconnects between an AC power supply and the PWM converter in response to a command, and a command unit that continues outputting a connection command to the switch while a DC voltage in the DC link is boosted up to a prescribed voltage by the DC power, and that initiates outputting a disconnection command to the switch after the DC voltage in the DC link reaches the prescribed voltage and before the inverter initiates powering operation.
Abstract:
A motor drive control apparatus according to the present invention includes: a three-phase rectifier to rectify an AC voltage supplied from a three-phase AC source; a booster circuit including a reactor, a switching element, and a backflow preventing element, to boost a DC bus voltage supplied from the three-phase rectifier; a smoothing capacitor to smooth an output of the booster circuit; and an inverter circuit to convert the DC bus voltage smoothed by the smoothing capacitor into an AC voltage and supplying the AC voltage to a motor. During a starting operation of a boosting operation of the booster circuit or a stopping operation of the boosting operation thereof, a rotation speed of the motor is fixed.
Abstract:
Phase correction unit (25) for outputting a commutation signal for switching a winding that allows a current to flow to brushless DC motor (4) and drive unit (16) for outputting a drive signal indicating supplying timing of electric power supplied to brushless DC motor (4) by inverter (3) based on the commutation signal output from phase correction unit (25) are provided so as to maintain a predetermined relation between a phase of a current flowing to a predetermined winding of brushless DC motor (4) and a phase of a voltage. Since brushless DC motor (4) is driven by a signal for holding the predetermined relation between the phase of the current and the phase of the voltage, the stability of drive under high-speed and high-load conditions is enhanced and a drive range is extended.
Abstract:
A three-phase regenerative drive (20) is operated based upon power from a single-phase AC source (12) and power from a DC source (14). The single-phase AC input power and the DC input power are converted to DC voltage on a DC bus (24) by a three-phase converter (22). DC power is provided from the DC bus (24) to a three-phase inverter having outputs connected to a motor (34). A controller (44) controls operation of the three-phase converter (22) based upon contribution factors of the AC and DC sources (12, 14) during motoring and regeneration. The controller (44) also controls an AC component of current from the DC source to reduce ripple current on the DC bus (24).
Abstract:
A refrigerator and a method of operating the same are disclosed. In the refrigerator and the method of operating the same, a voltage of an electric power input is measured and rectified through the half wave rectification or the full wave rectification in correspondence with the measured voltage, so that the refrigerator can be used without a voltage converting device when a voltage of the input power is changed. Therefore, the change or the modification of the circuit is not needed in order to use the refrigerator in other regions. Since components are compatible and utility of the components is improved, manufacturing costs can be reduced.
Abstract:
Multilevel voltage arrangement having a transformer and a power converter or inverter comprising one or more common DC links connectable to a power source, said arrangement comprising one first set of H bridges being connected to said common DC link, wherein each of said H bridges comprises with at least two nodes connected to the ends of wirings at the primary side of a transfer, wherein control means are configured for controlling H bridges so as to achieve a multilevel voltage signal between the first node and the second node of said H bridges.