Abstract:
A power conversion apparatus includes: a rectifying unit that rectifies an AC voltage input from an AC power supply to convert the AC voltage into a DC link voltage; a capacitor that is charged with a DC link voltage converted by the rectifying unit; a power application unit that converts the DC link voltage with which the capacitor is charged into an AC voltage by switching the DC link voltage, and outputs the AC voltage to a motor; and a control unit that controls the power application unit. The control unit controls the power application unit such that a second beat is superimposed on a motor current, the second beat having a second frequency different from a first beat having a first frequency included in the motor current and having at least one of an amplitude or a phase aligned with the first beat.
Abstract:
A DC power-supply device that suppresses an excessive inrush current, can prevent breakage of elements and burnout of circuits, and converts alternating current from a three-phase AC power supply into direct current to supply it to a load, includes a rectifier circuit having a reactor connected to input or output side thereof and rectifying the alternating current from the three-phase AC power supply; first and second capacitors and connected in series between output terminals to the load; a charging unit selectively charges one or both of the first and second capacitors; and a control unit controlling the charging unit. When charging of the first and second capacitors is started, the control unit reduces the on-duty ratio, and then, until the on-duty ratio during a normal operation is reached, the control unit executes control such that the on-duty ratio is gradually increased as a predetermined time period is passed.
Abstract:
Provided is a power conversion device configured to convert electric power from a power source to a load, including: a boosting device including a boost rectification unit configured to prevent backflow of a current from the load side to the power source side, the boosting device being configured to change a voltage of power from the power source to a predetermined voltage based on a drive signal; a commutation device configured to perform commutation operation in which a current flowing through the boosting device is caused to flow into an other path based on a commutation signal; and a signal generating module device configured as a module to generate and send an output signal based on an input signal that is input thereto. The input signal has an on-pulse width greater than a length of time where the output signal generated by the signal generating module device is turned on.
Abstract:
A motor drive control apparatus according to the present invention includes: a three-phase rectifier to rectify an AC voltage supplied from a three-phase AC source; a booster circuit including a reactor, a switching element, and a backflow preventing element, to boost a DC bus voltage supplied from the three-phase rectifier; a smoothing capacitor to smooth an output of the booster circuit; and an inverter circuit to convert the DC bus voltage smoothed by the smoothing capacitor into an AC voltage and supplying the AC voltage to a motor. During a starting operation of a boosting operation of the booster circuit or a stopping operation of the boosting operation thereof, a rotation speed of the motor is fixed.
Abstract:
A heat pump device capable of efficiently and reliably preventing a liquid refrigerant from stagnating in a compressor an air conditioner, a heat pump water heater, a refrigerator, and a freezing machine including the heat pump device. The configuration is such that, when the compressor is under operation standby, a high-frequency voltage synchronizing with a carrier signal is supplied to the compressor motor to carry out the locked energization of the compressor motor. From respective inter-phase voltages, respective phase voltages, or respective phase currents of the compressor motor for a plurality of high-frequency energization cycles, the detection values for one high-frequency energization cycle are restored. A power value calculated using the restored detection values for one high-frequency energization cycle is controlled to coincide with a heating power command necessary for discharging the liquid refrigerant stagnated in the compressor to the outside of the compressor.
Abstract:
A power conversion device located between an AC power source and a load includes: a rectifier circuit unit that rectifies a voltage of the AC power source; a smoothing unit that smooths a DC voltage on the load side of the rectifier circuit unit; a short-circuiting unit that short-circuits the AC power source; a step-up reactor—located on the AC power source side of the short-circuiting unit; at least one of a reactor current detecting unit—that detects the current of the step-up reactor and a bus voltage detecting unit that detects an output voltage of the smoothing unit; a counterflow preventing element that prevents a counterflow of the current from the smoothing unit to the AC power source; a switching control unit that outputs a control signal for the short-circuiting unit; and a switching frequency changing unit that changes a frequency of the control signal using a logic operation.
Abstract:
a permanent magnet synchronous motor diagnostic device includes: a negative-sequence current calculator that calculates a negative-sequence current, based on magnitudes of a plurality of phase currents flowing through a permanent magnet synchronous motor that rotates a load; and a deterioration diagnoser that diagnoses deterioration of a plain bearing supporting the permanent magnet synchronous motor, based on the negative-sequence current.
Abstract:
A rectifier, a booster circuit configured to boost an output voltage of the rectifier, a smoothing capacitor configured to smooth an output voltage of the booster circuit, and an inverter circuit configured to convert a DC voltage of the smoothing capacitor to an AC voltage and drive a motor forming a part of a device supplied with the voltage after the conversion, are included. In addition, a reactor, a first backflow prevention element, a second backflow prevention element, a first switching element, a second switching element, an intermediate capacitor, and a controller configured to control the first switching element and the second switching element, are included.
Abstract:
A backflow preventing device includes a backflow preventing element that is connected between a power supply and a load and that prevents electric current from flowing backward from the load side toward the power supply side, and a commutating device that performs a commutation operation for causing the electric current to flow to a commutation path connected in parallel with the backflow preventing element. A plurality of elements including at least one or more of elements constituting the commutating device are configured as a module, so that, for example, the device can be reduced in size. Moreover, a simplified heat-dissipation design and a simplified air-duct design can be achieved.
Abstract:
A power conversion apparatus includes a rectifier, a converter including a reactor, a switching element, and a reverse current prevention element, a smoothing capacitor configured to smooth the output voltage, a current detector configured to detect a reactor current, a voltage detector configured to detect the output voltage, and a converter control unit configured to control operation of the switching element of the converter. The converter-control unit includes a switching command calculation unit configured to calculate a switching command value responsive to a ratio of the rectified voltage to the output voltage in accordance with the output voltage and the reactor current, a switching control unit configured to control operation of the switching element in accordance with the switching command value, and a supply abnormality determination unit configured to determine occurrence of a momentary power failure or voltage sag in accordance with the switching command value.