Abstract:
An apparatus for use in the measurement of the optical density of macular pigment in the human eye, and an apparatus for the use in measuring the lens optical density of a human eye. The apparatus is particularly applicable to flicker photometers, which are used to measure the macular pigment in the human eye.
Abstract:
Spectrophotometer for the characterisation of receivers of solar collectors in order to determine optical properties (transmittance and reflectance). The equipment allows the evaluation of a receiver tube in real time and in any kind of light conditions, both inside and outside. The equipment also allows the detection of the eccentricity between the outer tube and the inner tube, which directly influences the reliability of the measurement. The equipment has a mechanical system for allowing a rotation of the equipment around the tube in order to find the optimum measurement position and attach itself to the tube.
Abstract:
A reflectance spectroscopy measuring and sampling system for gemstone testing is disclosed. The system includes a first light source (1), a second light source (2), a light filtering element, an integrating sphere (S), an optical fiber (9), a spectroscopic detection module (10), an analog-digital conversion module (11) and a data processing terminal (12), wherein the integrating sphere (S) is provided with an entrance port, a sampling opening (6) and a reflected light exit port (7). A reflectance spectroscopy measuring and sampling method for gemstone testing is also disclosed. The system and the method have an excellent performance and can be widely used in the gemstone identification.
Abstract:
Photoluminescence quantum yield (PLQY) testing of quantum dots is described. In one embodiment, a method involves heating a sample including quantum dots and illuminating the sample with a light source. The method involves measuring spectra of luminescence from the illuminated quantum dots of the sample at each of a plurality of temperatures. The method involves measuring each of the plurality of temperatures with a temperature sensor. The PLQY at each of the plurality of temperatures is computed based on the measured spectra. The method further involves computing a relationship between QD emission wavelength of the measured spectra and the plurality of temperatures measured with the temperature sensor. The relationship is used to determine the QD temperature corresponding to each of the PLQY computations. In one embodiment, an integrating sphere moves on a gantry over the samples.
Abstract:
Systems and methods for measuring spectra and other optical characteristics such as colors, translucence, gloss, and other characteristics of objects and materials such as skin. Instruments and methods for measuring spectra and other optical characteristics of skin or other translucent or opaque objects utilize an abridged spectrophotometer and improved calibration/normalization methods. Improved linearization methods also are provided, as are improved classifier-based algorithms. User control is provided via a graphical user interface. Product or product formulations to match the measured skin or other object or to transform the skin or other object are provided to lighten, darken, make more uniform and the like.
Abstract:
An improved method and an improved device for carrying out an optical comparison between at least two samples, preferably by comparing sections that can be selected, is characterized by the following characteristics: the sample (UR, LE, I) that is to be examined and is characterized by a non-uniformity in the structure and/or color is illuminated by diffused light; from the light reflected by the sample (UR, LE, I) to be examined, an interference spectrum is created by means of a spectrometer; the interference spectrum created by the spectrometer is depicted on a camera; the interference spectrum obtained in this way and/or values of the sample (I) to be examined derived therefrom are used as sample values which are compared to sample values of a reference sample (UR, LE) obtained accordingly.
Abstract:
Provided are an integrating sphere photometer and a measuring method of the same. The integrating sphere photometer includes a plurality of photodetectors, an integrating sphere having through-holes formed to correspond to the photodetectors, baffles disposed inside the integrating sphere in front of the photodetectors to be spaced apart from the photodetectors, a photometer disposed at a through-hole, and an adjustment unit adjusting output signals of the photodetectors to have the same output signal with respect to light illuminated from a point-like standard light source disposed at a center region in the integrating sphere.
Abstract:
A method of determining lighting contributions of elements of a lighting component includes obtaining optical data representative of light output of the lighting component. Relative intensity data may be calculated from the optical data, and may indicate intensity differences in the light output of the lighting component as compared to that of a reference component. An optical property of an element of the lighting component is determined based on a comparison of the optical data with that of the reference component, where the reference component includes at least one reference element. Related systems and apparatus are also discussed.
Abstract:
Systems for generating uniform monochromatic electromagnetic radiation that include an electromagnetic radiation source and a bandpass filter assembly to filter electromagnetic radiation emitted by the electromagnetic radiation source. The systems also include an optical integrating sphere to receive the filtered electromagnetic radiation and to uniformly scatter the filtered electromagnetic radiation within the optical integrating sphere, wherein the optical integrating sphere comprises an output to emit the uniformly scattered, filtered electromagnetic radiation.
Abstract:
A calibration device 21 according to the present invention is a member used for white calibration of an optical characteristic measuring apparatus 1 for measuring an optical characteristic of a specimen arranged to close a measuring opening and is used together with a spacer 24. Accordingly, such a calibration device 21 can perform more accurate white calibration by preventing formation of an interference pattern by the spacer 24.