Abstract:
An optical spectrum analyzer includes an optical section 130 for executing light dispersion into a spectrum and wavelength sweep for input measured light, converting the measured light into an electric signal, and outputting the electric signal, a control section 101 for controlling the wavelength sweep of the optical section and outputting a sampling clock of a period shifting from a cycle period of the measured light for each wavelength of the wavelength sweep, and a measurement section 140 for executing sequential sampling of the electric signal from the optical section for each sampling clock.
Abstract:
A target-seeking-and-tracking system featuring hyperspectral sensing performed by a tunable filter and an infrared focal plane array is programmable to collect and process several hyperspectral bands of infrared radiation emanating from a target scenery. The programming is done by tuning the filter from time to time to collect several hyperspectral bands containing image data corresponding to several objects of interest in the scenery. The image data is further processed in the target recognition unit to identify the objects and aid in the selection and tracking of a particular target object for the ultimate goal of accurate destruction of the object. The programmability of hyperspectral sensing provides a degree of countermeasures immunity by allowing several bands to be combined to achieve the best signal-to-clutter ratio.
Abstract:
A portable acousto-optical (AO) spectrometer system comprised of at least one AO crystal cell device specially designed for cancellation of side-lobe noise at a desired tuned wavelength of operation. Each AO crystal cell device has a transducer attached and forms an AO tunable filter (AOTF) and forms part of a photo-head assembly. The system can include an optical fiber link between the AO spectrometer photo-head assembly and additional features such as an optical alignment coupling attachment that couple an excitation source such as a laser that operates in either pulse or continuous mode, a probing fiber that provides a hand-held member that can emit a source radiation and in turn observe radiation reflected from an observed sample. There are two embodiment of the AO crystal cell device. Either embodiment of the AO crystal cell design can be used in the system, providing a vibration-insensitive AO spectrometer instrument having high sensitivity, accuracy and resolution capabilities. The types of spectroscopic measurements that can be performed using the invention include fluorescence, Raman, absorption and emission.
Abstract:
An integrated system including one or more light sources, at least one processor, an optical lens, a two-dimensional tunable filter, one or more two-dimensional array of detection elements and instructions and a method using the integrated system. The system includes a plurality of modes: a Raman mode, an absorption mode, a luminescence mode, a crossed polarization mode, a crossed polarization absorption mode, bright field transmission or reflectance modes and a birefringence mode. The system includes instructions, executable by Sequential outputs from the two-dimensional array of detection elements is combined to generate a chemical image of the sample, wherein each of the sequential outputs from the first two-dimensional array of detection elements corresponds to spatially accurate wavelength-resolved images. The system is also used to detect dynamic changes in a sample over time by monitoring the sample using one or more of the modes.
Abstract:
An efficient and versatile spectrometric sensor can be configured with an acousto-optic tunable filter. With this diverse spectral filter, the central wavelength and bandwidth of the filter can be quickly tuned to the desired wavelength. A sensor, for measuring at least selected component in a composition, can include: (a) a broadband light source, (b) an acousto-optic tunable filter (AOTF), (c) means for generating a beam of light from the light source and directing the beam of light at the AOTF wherein the AOTF is tuned to pass detection light having a desired wavelength range to detect the presence of the at least one component in the composition, (d) means for directing the detection light of known wavelength to the composition, (e) detection means for receiving light that emerges from the composition, and (f) a program structure that is coupled to the AOTF, the program structure capable of providing the AOTF with at least one desired wavelength range that is characteristic of the least one component in the composition. In addition, the device can be configured so that the AOTF is on the detection side of the sensor. The sensors can be used to measure the thickness of optically transparent films.
Abstract:
An object of the invention is to realize an optical spectrum analyzer capable of performing high-speed waveform sweep. The invention is to make improvements to an optical spectrum analyzer for measuring a spectrum of light to be measured by collimating light to be measured by collimator means, spectroscopically separating the collimated light incident from the collimator means according to an incident angle by a diffraction grating, and detecting the light spectroscopically separated by the diffraction grating by a photodetector via a slit. The device is characterized by including an acoustooptic deflector provided between the collimator means and the diffraction grating for deflecting the collimated light to be measured and changing the incident angle on the diffraction grating.
Abstract:
Fluorescence emitted from a tissue can be detected efficiently, and excitation light with a plurality of wavelengths can be simultaneously emitted to simultaneously detect fluorescence with a plurality of wavelengths. A laser-scanning fluoroscopy apparatus includes a laser light source of a plurality of wavelengths; a spectroscopic device for splitting laser beams according to wavelength; a focusing lens for focusing the split laser beams; and a wavelength-selecting reflection device which includes a plurality of reflection sections disposed near the focal positions, spaced out at predetermined intervals in a split direction to reflect the laser beams with different wavelengths and a transmission section arranged adjacent to the reflection sections. The laser-scanning fluoroscopy apparatus further includes a diffraction grating for combining the reflected laser beams; a scanning section for two-dimensionally scanning the combined laser beams; an objective optical system for focusing the scanned laser beams onto a tissue; and a photodetector for detecting fluorescence emitted from the tissue. A width dimension, as measured along the split direction, of each reflection section of the wavelength-selecting reflection device is smaller than a width dimension of the transmission section.
Abstract:
A spectrometer that provides the ability to combine the advantages of high resolution, compactness, ruggedness, and low-power consumption of Fabry-Perot (FP) tunable filter spectrometer, with the multi-channel multiplexing advantage of FT and/or grating/detector array. The key concept is to design and operate a tunable FP filter in a multiple-order condition. This filter is then followed by a “low-resolution” fixed grating, which disperses the filtered n-order signal into a preferably matched N-element detector array for parallel detection. The spectral resolution in this system is determined by the FP filter, which can be designed to have very high resolution. The N-order parallel detection scheme reduces the total integration or scan time by a factor of N to achieve the same signal to noise ratio (SNR) at the same resolution as the single channel tunable filter method. This design is also very flexible, allowing spectrometer systems with appropriate order N to thereby optimize the system performance for spectral resolution and scan integration time. In addition to the significant reduction in scan integration time, there are two other advantages to this approach. The first, because the FP tunable filter is designed and operated under n-orders, the fabrication tolerances of the FP filter cavity and operating conditions are significantly loosened.
Abstract:
A scanning tunable detection system and related method for analyzing samples includes a source of time varying excitation signals and a tunable optical filter for selectively transmitting time-varying optical signals emanated from a sample following irradiation with the time varying excitation signals. A detector is provided for converting the time-varying optical signals to electrical detection signals. The system can identify components in a sample using phase sensitive or time sensitive detection. A slew scan mode can be used to permit slow scanning through spectral regions rich in information but quickly in regions without such information.
Abstract:
Optical instruments having, inter alia, optics to process wavelengths of electromagnetic radiation to produce an interferogram. The instruments include at least one optical path and optical elements positioned along this path for splitting the electromagnetic radiation and spectrally dispersing the wavelengths to produce first and second sets of spectrally dispersed beams which interfere with each other to produce a plurality of different fringes of different wavelengths. The optics for dispersing the wavelengths includes a matched pair of gratings. The gratings may be reflective or they may be transmissive. The optics also includes a beam splitter and first and second mirrors. The gratings may be positioned in a variety of locations along the optical path. The instruments can also include a detector for detecting the interferogram and means for processing the detected interferogram to produce spectral information.