Abstract:
An apparatus and method for determining the concentration of chiral molecules in a fluid includes a first polarizer configure to polarize light in substantially a first plane to provide initially polarized light. A second polarizer is capable of polarizing the initially polarized light in a plurality of planes, at least one of the plurality of planes being different from the first plane, to provide subsequently polarized light. One or more receivers are included for measuring an intensity of the subsequently polarized light in one or more of the plurality of planes.
Abstract:
미소한 결함을 검출하고, 검출한 결함의 치수를 고정밀도로 계측하고, 시료를 비파괴로 검사하고, 검출 결함의 개수, 위치, 치수, 결함 종류에 관하여 실질적으로 일정한 검사 결과가 얻어지도록 하고, 일정 시간 내에 다수의 시료를 검사할 수 있도록 하기 위해, 결함 검사 장치를, 시료의 표면에 선 형상의 영역에 조명광을 조사하는 조사 수단과, 조사 수단에 의해 시료 위의 광이 조사된 선 형상의 영역으로부터 반사·산란한 광을 검출하는 검출 수단과, 반사·산란한 광을 검출하여 얻은 신호를 처리하여 시료 위의 결함을 검출하는 신호 처리 수단을 구비하여 구성하고, 검출 수단은 시료로부터 반사·산란한 광을 일방향으로 확산시켜서 일방향과 직각인 방향으로 결상시키는 광학계와, 검출 화소를 이차원으로 배치한 어레이 센서를 갖고서 광학계에 의해 일방향으로 확산시켜 일방향과 직각인 방향으로 결상시킨 반사·산란광을 검출하여 반사·산란광을 확산시킨 방향으로 배열하는 각 검출 화소의 출력 신호를 가산하여 출력하는 검출계를 구비하였다.
Abstract:
A method for measuring polarization and anisotropy of fluorophores comprises activating reversibly switchable fluorophores in a sample. The activating comprises applying of a first activation light pulse of a wavelength suitable for switching the reversibly switchable fluorophores into a long-lived photo-selected state. Polarization and anisotropy of the reversibly switchable fluorophores in the long-lived photo-selected state are read out. The reading out in turn comprises applying of a read-out light pulse and detecting emission from the reversibly switchable fluorescent proteins. The first activation light pulse or the read-out light pulse comprises non-polarized light or circularly polarized light. The other one of the first activation light pulse and the read-out light pulse comprises linearly polarized light. A system for measuring polarization and anisotropy of fluorophores is also disclosed.
Abstract:
Methods for identifying bacterial species in biofluid samples (e.g., whole blood samples) are described. The methods rely on optical spectroscopy, and enable rapid detection and identification of bacteria directly from whole blood. Not only can LSS-based techniques detect and identify bacteria in biofluids such as whole blood, but that species-level identification can potentially be made based on a small number of bacterial cells, without the need for observing entire colonies or performing susceptibility testing. The methods may comprise illuminating the biofluid sample with input light, detecting scattered light produced by the biofluid sample in response to the illuminating, generating first data indicative of a measured scattering spectrum associated with the biofluid sample using the detected scattered light, and identifying whether at least one of the bacterial species is present in the biofluid sample using the first data.
Abstract:
A measurement system is disclosed and includes a light source, a receiver, a measurement subject, and a reflector. The reflector is disposed on an opposite side of the measurement subject than are the light source and the receiver.