Abstract:
Le véhicule (14) est doté d'au moins deux entités de lecture (15G, 15D) pour assurer le guidage le long d'un seul conducteur (16), posé ou enfoui dans le sol et couvrant tout le circuit, le choix de l'entité commandé par l'ordinateur définissant la direction à prendre. Les commandes transmises de l'ordinateur au véhicule (14) sont exécutées au fur et à mesure des rencontres de codes fixés dans le sol et perçus par les entités de lecture (15G, 15D).
Abstract:
A driving apparatus and an operating method of the same are provided. The driving apparatus includes: a driving part for driving; and a handling part positioned above the driving part and handling a target object, wherein the handling part transports the target object to a destination and performs a self-replacement operation of replacing the target object with a replacement target object located at the destination.
Abstract:
A method of transporting equipment modules to an incident scene with an comprises: determining an initial location of the incident scene; dispatching an ambulance loaded with the autonomous mobile response unit and a plurality of equipment modules to the initial location; determining a refined location of the incident scene; selecting a first equipment module; dispensing the first equipment module from the ambulance onto the autonomous mobile response unit; deploying the autonomous mobile response unit from the ambulance at the initial location; communicating the refined location of the incident scene to the autonomous mobile response unit; generating, with the navigation system, a drive path from the initial location to the refined location; and driving, with the drive system, the autonomous mobile response unit loaded with the first equipment module based on the drive path such that the autonomous mobile response unit travels from the initial location to the refined location.
Abstract:
Methods and enhanced apparatus used in such methods are described that a dispatched logistics operation for a deliverable item from a hold-at-location (HAL) logistics facility having a secured storage and using a modular autonomous bot apparatus assembly and a dispatch server. The bot apparatus assembly picks up and delivers the item from the HAL facility in response to a delivery dispatch command from the dispatch server. In response, the MAM of the bot verifies compatibility of modular components for the operation, controls receiving of the deliverable item from the secured storage at the HAL facility, then autonomously causes movement to the delivery destination. The MAM notifies the customer before delivery of the approaching delivery, authenticates delivery is to the authorized customer, provides access to the item within the bot apparatus assembly, monitors unloading of the item, then autonomously moves back to the HAL facility.
Abstract:
A system and method for a motorized mobile chair use a plurality of sensors having a plurality of sensor types to detect a plurality of objects and generate sensor data about the detected objects, each of the detected objects being a person, the sensor data about the objects comprising a plurality of range measurements to the people and a plurality of bearing measurements to the people. The system has at least one processor to receive the sensor data about the people, group the detected people into a plurality of zones, determine a closest person in each zone, and generate one or more control signals to cause the motorized mobile chair to match a speed and a direction of the closest person in the zone corresponding to a direction of travel of the motorized mobile chair while at least approximately maintaining a selected space to the closest person in the zone corresponding to the direction of travel of the motorized mobile chair.
Abstract:
Patient support apparatuses, such as beds, cots, stretchers, recliners, or the like, include control systems with one or more image, radar, and/or laser sensors to detect objects and determine if a likelihood of collision exists. If so, the control system controls the speed and steering of the patient support apparatus in order to reduce the likelihood of collision. The control system may be adapted to autonomously drive the patient support apparatus, to transmit a message to a remote device indicating whether it is occupied by a patient or not, and/or to transmit its route to the remote device. The remote device may determine an estimate of a time of arrival of the patient support apparatus at a particular destination and/or determine a distance of the patient support apparatus from the particular destination.
Abstract:
A sanitation monitoring and control system and associated method are used to route sanitation resources, such as sanitation robots configured to sweep, vacuum, or empty trash receptacles, in a facility. The system includes a network of sensors disposed throughout the facility and configured to sense patrons within the facility. A sanitation monitoring and control server stores records of patron positions at different times determined using the network of sensors, determines numbers of patrons in different areas of the facility at the different times according to the patrons' determined positions, determines activities patrons are engaged in in the different areas at the different times, and calculates sanitations scores for the areas according to a weighted sum of the numbers of patrons engaging in the determined activities. A route for the sanitation resource is calculated based on the sanitation scores and is transmitted to the sanitation resource to provide sanitation services.
Abstract:
A robot system includes a mobile robot having a controller executing a control system for controlling operation of the robot, a cloud computing service in communication with the controller of the robot, and a remote computing device in communication with the cloud computing service. The remote computing device communicates with the robot through the cloud computing service.
Abstract:
A mobile X-ray examination apparatus has an instruction receiving device that receives an entered instruction for the mobile X-ray examination apparatus to reach a designated position. A navigation device creates an environment map of an environment of the mobile X-ray examination apparatus, determines a current position of the mobile X-ray examination apparatus according to detected environment profile information, calculates a movement trajectory of the mobile X-ray examination apparatus according to the environment map, the current position and the designated position received by the instruction receiving device, and sends corresponding information to a central control device. The central control device causes the mobile X-ray examination apparatus to reach the designated position along the movement trajectory according to the corresponding information sent by the navigation device.
Abstract:
A method for constraining movements of a robot comprises: using the robot, receiving dynamic building data that describes a temporary condition of a building or campus comprising a set of buildings and a location of the temporary condition; using the robot, updating, from the dynamic building data, a map layer of a plurality of map layers of a map by calculating an increased cost of navigation of the portion of the map layer corresponding to the location of the temporary condition, the increased cost based on the description of the temporary condition; using the robot, upon receiving a task having an origin location and a destination location, determining a fastest route from the origin location to the destination location from the plurality of map layers of the map using a graph search algorithm that calculates an expected velocity of the robot over the portion of the map layer corresponding to the location of the temporary condition; using the robot, traversing the fastest route from the origin location to the destination location.