Abstract:
A portable keyboard consists of a pliable key body and a circuit body. The key body has a plurality of key caps which is embedded with an electric contact made from conductive rubber. The circuit body is embedded with a connection line made from conductive rubber. The keyboard thus constructed is highly pliable, and may be bent, folded or twisted without affecting the electronic characteristics of the keyboard.
Abstract:
A switch comprises two substrates coated with conductive elements opposed to each other across a gap. At least one of the conductive elements comprises an intrinsically conductive polymer. The switch completes an electrical circuit when one of substrates is pressed toward the other of the substrates and the two conductive elements touch. The polarity applied to the intrinsically conductive polymer coating is, preferably, negative. The voltage applied to the electrical circuit, is, preferably, less than five volts; more preferably, the voltage applied to the electrical circuit is less than three volts; even more preferably, the voltage applied to the electrical circuit is less than one volt.
Abstract:
The present invention relates to a membrane switch which is not subject to stress relaxation at contacts and is resistant to the reduction in actuating force even if the ambient temperature of the switch becomes high. A first flexible insulating substrate having a first contact pattern and a second flexible insulating substrate having a second contact pattern are disposed in facing relation via a spacer member having an opening at an area in which the first contact patterns face each other; wiring patterns conductive-connected to corresponding contact patterns are provided on at least one of the first flexible insulating substrate and the second flexible insulating substrate; and the first and second contact patterns are conductive-connected by pressure applied to a contact comprising the first and second contact patterns. The wiring patterns are conductive layers containing resin made of a mixture of conductive powder and binder resin, and a part of the second contact pattern includes a layer containing resin that is more rigid than the binder resin.
Abstract:
A switching apparatus which includes a rubber keypad (32, FIG. 2) with a rubber cap (36) that can be depressed by a person's finger to snap a snap dome (52) that connects contacts (21, 22) of a first switch (70), provides increased tactile feedback to the person's finger. A keycap (42) of rigid material includes a cover (44) lying on top of the rubber cap and also includes a stem (54) that projects down through a hole in the cap, with a lower stem end (60) lying above the snap dome to snap down the dome when a person's finger depresses the cover. The tactile snap feedback is transmitted directly through the rigid material of the stem to the rigid material of the cover, to the person's finger to indicate that the switch has been closed. The cap has a radially outer part (84), and an electrically conductive element (82) is mounted on the outer part to engage contacts (23, 24) of a second switch (80) to close it, before the snap dome is snapped to close the first switch. The coupling portion (38) is designed to not produce a tactile response, and the conductive element is preferably of conductive elastomeric material to avoid a tactile feedback that would falsely indicate that both switches were closed.
Abstract:
A push button switch comprises a housing having an opening at the top and provided with a fixed contact member at the inner bottom, a stem supported to be vertically movable in and with respect to the housing, and an elastic member being capable of buckling and having one end attached to near a lower end of the stem and the other end attached to near the inner bottom of the housing, the elastic member being positioned in the housing to extend diagonally and urging the stem upward by its own resilient force. A high degree of reliability is ensured with the simple structure and a good click feeling is provided.
Abstract:
A thermally curable conductive polymer thick film composition comprising, by weight:(a) about 3-15 parts of at least one thermoplastic vinyl acetate/vinyl chloride/dicarboxylic acid multipolymer resin;(b) a second thermoplastic resin selected from the group consisting of:(i) about 1-6 parts of at least one thermoplastic polyurethane resin;(ii) about 2-10 parts of at least one thermoplastic polyester resin; or(iii) about 1-10 parts of a mixture of at least one thermoplastic polyurethane and at least one thermoplastic polyester resin;(c) about 0.05-1 parts of a tertiary amine;(d) an effective amount of at least one organic solvent capable of substantially dissolving (a), (b), and (c) ingredients; and(e) about 50-80 parts of silver flake.
Abstract:
A capacitive switch assembly formed on a glass substrate with one capacitive plate formed of a thin metal film deposited thereon covered by a dielectric spacer deposited thereover for spacing therefrom a second plate formed of conductive polymer paste screened on the dielectric spacer. Discontinuities are provided in the second plate which is brought in-circuit by a conductive elastomer shorting bar movable upon user actuation of the switch.
Abstract:
A keyboard for typewriters or similar machines has a key support, switching contacts and key push rods, each of which is acted upon by a spring. The design of the few individual parts assures their simple manufacture (extruded parts and a stamped part) as well as an assembly just as simple and therefore automated, and, if desired, even without screws or aids of that type. Activation of the individual keys takes place with satisfactory tactile feedback and without undesireable vibrations.
Abstract:
A rubber structure contact connector includes a support upon which is placed an electrical contact. An insulating material, such as rubber, is applied over the contact and overlies the support and it has a portion which is formed as a raised dome-shaped resilient compressible portion or actuating key. On the interior of the dome-shaped, resilient compressible portion, there is a surface which has an oil-resistant layer thereon and a conductive portion which overlies the oil-resistant layer. The conductive portion is aligned over the electrical contact. In another embodiment, instead of the covering on the interior surface of the key which includes only an oil-resistant layer and an electrical conductive part, there is an electro-conductive part on the interior surface followed by an oil-resistant layer and another electrical conductive part.
Abstract:
A covering member of keyboard prepared by separately fixing the push button elements to a base plate instead of integral molding is disclosed in which the plate has openings arranged conforming to the pattern of the fixed contact points on the circuit board. Fixing is carried out by using a silicone rubber-based adhesive or a pressure-sensitive adhesive optionally with the aid of tailing of protrusions on the base plate into the cavity of the base of the push button elements. A method of using unit bodies carrying push button elements is alternatively used. A base plate having openings arranged in the pattern corresponding to the fixed contact points is also disclosed for use in fixing the push button elements.