Abstract:
An apparatus and a method for stabilizing the threshold voltage in an active matrix field emission device. The method includes the formation of radiation-blocking elements between a cathodoluminescent display screen of the FED and semiconductor junctions formed on a baseplate of the FED.
Abstract:
A field emission display which includes thin film resistors disposed between the electron-emitting elements of a cathode and a conductive support which provides electrical connection to said electron-emitting element through said thin film.
Abstract:
A field emitter cell includes a thin film edge emitter normal to a gate layer. The field emitter is a multilayer structure including a low work function material sandwiched between two protective layers. The field emitter may be fabricated from a composite starting structure including a conductive substrate layer, an insulation layer, a standoff layer and a gate layer, with a perforation extending from the gate layer into the substrate layer. The emitter material is conformally deposited by chemical beam deposition along the sidewalls of the perforation. Alternatively, the starting material may be a conductive substrate having a protrusion thereon. The emitter layer, standoff layer, insulation layer, and gate layer are sequentially deposited, and the unwanted portions of each are preferentially removed to provide the desired structure.
Abstract:
The present invention provides an image display capable of enhancing a production yield. The image display comprises a display device including a first plate which has a plurality of electron-emitter elements each having a structure comprised of a base electrode, an insulating layer and a top electrode stacked on one another in this order, the electron-emitter element emitting electrons from the surface of the top electrode when a voltage of positive polarity is applied to the top electrode; a plurality of first electrodes for respectively applying driving voltages to the base electrodes of the electron-emitter elements lying in a row (or column) direction; and a plurality of second electrodes for respectively applying driving voltages to the top electrodes of the electron-emitter elements lying in the column (or row) direction, a frame component, and a second plate having phosphors, wherein a space surrounded by the first plate, the frame component and the second plate is brought into vacuum. In the display apparatus, the at least one electron-emitter element includes the base electrode and the top electrode, at least one of which is connected to the first electrode or the second electrode through a resistor element.
Abstract:
An apparatus and a method for stabilizing the threshold voltage in an active matrix field emission device. The method includes the formation of radiation-blocking elements between a cathodoluminescent display screen of the FED and semiconductor junctions formed on a baseplate of the FED.
Abstract:
The present invention includes field effect transistors, field emission apparatuses, thin film transistors, and methods of forming field effect transistors. According to one embodiment, a field effect transistor includes a semiconductive layer configured to form a channel region; a pair of spaced conductively doped semiconductive regions in electrical connection with the channel region of the semiconductive layer; a gate intermediate the semiconductive regions; and a gate dielectric layer intermediate the semiconductive layer and the gate, the gate dielectric layer being configured to align the gate with the channel region of the semiconductive layer. In one aspect, chemical-mechanical polishing self-aligns the gate with the channel region. According to another aspect, a field emission device includes a transistor configured to control the emission of electrons from an emitter.
Abstract:
A field emitter cell includes a thin-film-edge emitter normal to the gate layer. The field emitter cell may include a conductive substrate layer, an insulator layer having a perforation, a gate layer having a perforation, an emitter layer, and other optional layers. The perforation in the gate layer is larger and concentrically offset with respect to the perforation in the insulating layer and may be of a tapered construction. Alternatively, the perforation in the gate layer may be coincident with, or larger or smaller than, the perforation in the insulating layer, provided that the gate layer is shielded from the emitter from a direct line-of-sight by a nonconducting standoff layer. Optionally, the thin-film-edge emitter may include incorporated nanofilaments. The field emitter cell has low gate current, making it useful for various applications such as field emitter displays, high voltage power switching, microwave, RF amplification and other applications that require high emission currents.
Abstract:
A flat panel display, such as a Field Emission Display (“FED”), is disclosed having a current control circuit. Input into the display, initially, is an analog signal having an amplitude. In one embodiment, the current control circuit includes a converter for converting the analog input signal to a sawtooth signal having a height and width. Then, the level of the sawtooth signal is compared to a voltage level to establish a pulse width of an emitter current. The emitter current is thus controlled by a pulse width modulation approach. In another embodiment, the current control circuit traps a column voltage on a parasitic capacitance. The trapped voltage then controls the gate of a transistor to control current flow from the emitter set to ground.
Abstract:
A cathode structure suitable for a flat panel display is provided with coated emitters. The emitters are formed with material, typically nickel, capable of growing to a high aspect ratio. These emitters are then coated with carbon containing material for improving the chemical robustness and reducing the work function. One coating process is a DC plasma deposition process in which acetylene is pumped through a DC plasma reactor to create a DC plasma for coating the cathode structure. An alternative coating process is to electrically deposit raw carbon-based material onto the surface of the emitters, and subsequently reduce the raw carbon-based material to the carbon containing material. Work function of coated emitters is typically reduced by about 0.8 to 1.0 eV.
Abstract:
A cathode structure suitable for a flat panel display is provided with coated emitters. The emitters are formed with material, typically nickel, capable of growing to a high aspect ratio. These emitters are then coated with carbon containing material for improving the chemical robustness and reducing the work function. One coating process is a DC plasma deposition process in which acetylene is pumped through a DC plasma reactor to create a DC plasma for coating the cathode structure. An alternative coating process is to electrically deposit raw carbon-based material onto the surface of the emitters, and subsequently reduce the raw carbon-based material to the carbon containing material. Work function of coated emitters is typically reduced by about 0.8 to 1.0 eV.