Abstract:
Methods and apparatus for surface wetting control are disclosed. In certain described examples, an apparatus can expel fluid from a droplet on a surface using a transducer mechanically coupled to the surface. A first area of the surface can have a first wettability for the fluid, and a second area of the surface can have a second wettability for the fluid. The first wettability of the first area of the surface can be greater than the second wettability of the second area of the surface. The first area and the second area can be arranged in a patterned arrangement.
Abstract:
A microelectronic device includes an electrical conductor which includes a graphene heterolayer. The graphene heterolayer includes a plurality of alternating layers of graphene and barrier material. Each layer of the graphene has one to two atomic layers of graphene. Each layer of the barrier material has one to three layers of hexagonal boron nitride, cubic boron nitride, and/or aluminum nitride. The layers of graphene and the layers of barrier material may be continuous, or may be disposed in nanoparticles of a nanoparticle film.
Abstract:
A system is provided in which a set of modules each have a substrate on which is mounted a radio frequency (RF) transmitter and/or an RF receiver coupled to a near field communication (NFC) coupler located on the substrate. Each module has a housing that surrounds and encloses the substrate. The housing has a port region on a surface of the housing. Each module has a field confiner located between the NFC coupler and the port region on the housing configured to guide electromagnetic energy emanated from the NFC coupler through the port region to a port region of an adjacent module.
Abstract:
In described examples, an apparatus includes: a physics cell including: a laser source configured to emit light towards an atomic chamber containing an atomic gas; a photodetector configured to receive emissions from the atomic chamber; and a coil for generating a magnetic field in the atomic chamber; and an electronics circuit, including: a controller circuit coupled to the photodetector output and having control outputs to a digital to analog converter circuit; the digital to analog converter circuit having a coil current output to adjust the magnetic field, a modulation control output to control a modulation of the light, and having an output to control a voltage controlled oscillator; and a radio-frequency output circuit having a voltage controlled oscillator coupled to the output of the digital to analog converter circuit and outputting a radio frequency signal to the laser source in the physics cell.
Abstract:
An integrated circuit has a substrate which includes a semiconductor material, and an interconnect region disposed on the substrate. The integrated circuit includes a thermal routing trench in the substrate. The thermal routing trench includes a cohered nanoparticle film in which adjacent nanoparticles are cohered to each other. The thermal routing trench has a thermal conductivity higher than the semiconductor material contacting the thermal routing trench. The cohered nanoparticle film is formed by an additive process.
Abstract:
An integrated circuit (IC) that includes a circuit substrate having a front side surface and an opposite back side surface. Active circuitry is located on the front side surface. An inductive structure is located within a deep trench formed in the circuit substrate below the backside surface. The inductive structure is coupled to the active circuitry.
Abstract:
A floating die package including a cavity formed through sublimation of a sacrificial die encapsulant and sublimation or separation of die attach materials after molding assembly. A pinhole vent in the molding structure is provided as a sublimation path to allow gases to escape, whereby the die or die stack is released from the substrate and suspended in the cavity by the bond wires only.
Abstract:
In an example arrangement an apparatus includes a semiconductor substrate having a front side surface including circuitry and a backside surface opposing the front side surface; a plurality of metal conductors formed over a front side surface of the semiconductor substrate; at least one cavity opening etched in a backside surface of the semiconductor substrate; and a radiator formed in a portion of the metal conductors and configured to radiate signals through the cavity opening in the backside surface. Methods and additional apparatus arrangements are also disclosed.
Abstract:
A method forming packaged semiconductor devices includes providing a completed semiconductor package having a die with bond pads coupled to package pins. Sensor precursors including an ink and a liquid carrier are additively printed directly on the die or package to provide precursors for electrodes and a sensing material between the sensor electrodes. Sintering or curing removes the liquid carrier such that an ink residue remains to provide the sensor electrodes and sensing material. The sensor electrodes electrically coupled to the pins or bond pads or the die includes a wireless coupling structure coupled to the bond pads and the method includes additively printing an ink then sintering or curing to form a complementary wireless coupling structure on the completed semiconductor package coupled to the sensor electrodes so that sensing signals sensed by the sensor are wirelessly transmitted to the bond pads after being received by the wireless coupling structure.
Abstract:
A system is provided in which a set of modules each have a substrate on which is mounted a radio frequency (RF) transmitter and/or an RF receiver coupled to a near field communication (NFC) coupler located on the substrate. Each module has a housing that surrounds and encloses the substrate. The housing has a port region on a surface of the housing. Each module has a field confiner located between the NFC coupler and the port region on the housing configured to guide electromagnetic energy emanated from the NFC coupler through the port region to a port region of an adjacent module.