Abstract:
A linear compressor (100) applicable to a cooling system (20) includes a piston (1) driven by a linear motor (10), the piston (1) having displacement range controlled by means of a controlled voltage (VM), the controlled voltage (VM) having a voltage frequency (φP) applied to the linear motor (10) and adjusted by a processing unit (22), the range of piston (1) displacement being dynamically controlled in function of a variable demand of the cooling system (20), the linear compressor (100) having a resonance frequency, the processing unit (22) adjusting the range of piston (1) displacement, so that the linear compressor (100) will be dynamically kept on resonance throughout the variations in demand of the cooling system (20).
Abstract:
Systems and methods for compensating for pressure increase which may occur in various enclosed spaces of a pumping apparatus are disclosed. Embodiments of the present invention may compensate for pressure increases in chambers of a pumping apparatus by moving a pumping means of the pumping apparatus to adjust the volume of the chamber to compensate for a pressure increase in the chamber. More specifically, in one embodiment, to account for unwanted pressure increases to the fluid in a dispense chamber the dispense motor may be reversed to back out piston to compensate for any pressure increase in the dispense chamber.
Abstract:
Apparatus, methods, and system for wireless remote monitoring and controlling a sucker rod pump for producing hydrocarbons, providing self-adjusting methods for operation over a wide-range of operating conditions according to algorithms that automatically compensate for offset and amplitude drift in sensor data, automatically identify pump off conditions, and automatically optimize hold down time.
Abstract:
A method and a system for controlling an electric motor of a pump to counter act pressure pulsations generated by at least one pump element and to reduce noise, vibration, and harshness generated by the pump. The positions of at least one pump element of the pump and a shaft of the electric motor are determined. A pump stroke position is determined from the position of the pump element relative to the position of the shaft of the electric motor. The power sent to the electric motor is controlled according to the pump stroke position.
Abstract:
Embodiments of the present invention provide pumps with features to reduce form factor and increase reliability and serviceability. Additionally, embodiments of the present invention provide features for gentle fluid handling characteristics. Embodiments of the present invention can include a pump having a motor driven feed stage pump and a motor driven dispense stage pump. The feed stage motor and the feed stage motor can include various types of motors and the pumps can be rolling diaphragm or other pumps. According to one embodiment, a dispense block defining the pump chambers and various flow passages can be formed out of a single piece of material.
Abstract:
Embodiments of the present invention provide pumps with features to reduce form factor and increase reliability and serviceability. Additionally, embodiments of the present invention provide features for gentle fluid handling characteristics. Embodiments of the present invention can include a pump having a motor driven feed stage pump and a motor driven dispense stage pump. The feed stage motor and the feed stage motor can include various types of motors and the pumps can be rolling diaphragm or other pumps. According to one embodiment, a dispense block defining the pump chambers and various flow passages can be formed out of a single piece of material.
Abstract:
A linear motor (10), a linear compressor (100), a method of controlling a linear compressor (100), a cooling system (20) and a system of controlling a linear compressor (100) to operate a linear compressor (100) in resonance in it's the greatest possible efficiency throughout its operation are described. One of the ways of achieving these objectives is by means of a linear compressor (100) applicable to a cooling system (20), the linear compressor (100) comprising a piston (1) driven by a linear motor (10), the piston (1) having displacement range controlled by means of a controlled voltage (VM), the controlled voltage (VM) having a voltage frequency (φP) applied to the linear motor (10) and adjusted by a processing unit (22), the range of piston (1) displacement being dynamically controlled in function of a variable demand of the cooling system (20), the linear compressor (100) having a resonance frequency, the processing unit (22) adjusting the range of piston (1) displacement, so that the linear compressor (100) will be dynamically kept on resonance throughout the variations in demand of the cooling system (20).
Abstract:
The present invention discloses a piston and cylinder combination driven by linear motor with cylinder position recognition system, comprising a support structure (4) forming an air gap (12); a motor winding (6) generating a variable magnetic flow at least along part of the air gap (12); a cylinder (2) having a head at one of its ends; a piston (1) connected to a magnet (5), the magnet being driven by the magnetic flow of the motor winding (6) to move inside a displacement path including at least partially the air gap (12); the displacement of the magnet making the piston (1) reciprocatingly move inside the cylinder (2); and an inductive sensor (8) disposed at a point of the displacement path of the magnet (5), such that when the piston (1) reaches a position of closest approach to the cylinder head, the inductive sensor detects a variation in the magnetic field resulting from the corresponding position of the magnet, and generates a voltage signal arising from this magnetic field variation. The invention also discloses a linear motor compressor, which comprises a piston and cylinder combination of the kind of the present invention, and is capable of recognizing the position of the cylinder.
Abstract:
A method for controlling operation of a pump unit, where the pump unit includes a primary piston pump having a primary piston and a secondary piston pump having a secondary piston. The primary piston pump is fluidically connected with the secondary piston pump. The primary piston pump includes an inlet valve and an outlet valve, and the pump unit operates periodically according to a pump cycle. The method includes determining a fluid pressure of fluid dispensed by the pump unit, and performing a closed loop control of a position of the primary piston in dependence on the fluid pressure of the fluid dispensed by the pump unit during a first time interval of the pump cycle.
Abstract:
A method for increasing compressed air efficiency in a pump utilizes an air efficiency device in order to optimize the amount of a compressed air in a pump. The air efficiency device may allow for controlling the operation of the air operated diaphragm pump by reducing the flow of compressed air supplied to the pump as the pump moves between first and second diaphragm positions. A sensor may be used to monitor velocity of the diaphragm assemblies. In turn, full position feedback is possible so that the pump self adjusts to determine the optimum, or close to optimum, turndown point of the diaphragm assemblies. As such, air savings is achieved by minimizing the amount of required compressed air.