Abstract:
A sample separation apparatus for separating a liquid sample includes a first separation unit for separating the sample, a first fluid drive for conducting the sample to be separated through the first separation unit, a second separation unit, arranged downstream of the first separation unit, for further separating the sample, a second fluid drive for at least partially conducting the sample through the second separation unit, and a fluidic valve having interfaces fluidically coupled to the first and second fluid drives and being switchable for performing the separation of the sample. The apparatus is configured for adjusting a pressure at a predefined position to a predefined value, wherein the predefined position is in a fluidic path between an outlet of the first separation unit and an inlet of the second separation unit or in fluid communication with this fluidic path.
Abstract:
A fluid supply system (150) configured for supplying fluids, the fluid supply system (150) comprising a fluid packet supply unit (180) configured for controlling supply of a sequence (250) of fluid packets (222 to 230), the fluid packets (222 to 230) comprising a packet of first fluid (223) and a packet of second fluid (225), wherein the first fluid and the second fluid are media being prone to a phase separation upon direct interaction between the packet of first fluid (223) and the packet of second fluid (225), and a phase separation inhibiting unit (190) configured for inhibiting phase separation by inserting an intermediate fluid packet (224) between the packet of first fluid (223) and the packet of second fluid (225) to 230 to 230
Abstract:
A fluidic device, the fluidic device comprising a planar fluidic conduit for conducting a fluid, wherein the fluidic conduit has a plurality of fluidic disturbance features located along at least a section of the fluidic conduit for disturbing a laminar flow of the fluid along the section.
Abstract:
A method for metering two or more liquids in controlled proportions in a liquid supply system and for supplying a resultant mixture, in which the liquid supply system includes a plurality of solvent supply lines, a proportioning valve interposed between the solvent supply lines and an inlet of a pumping unit, the method includes drawing in a first liquid into the pumping unit via a first solvent supply line; determining one or more switching points of time for switching between different solvent supply lines, the switching points of time being determined in a way that at said switching points of time, the liquid supplied to the pumping unit is in a predefined pressure range; switching from the first solvent supply line to a second solvent supply line at one of said switching points of time; drawing in a second liquid into the pumping unit via the second solvent supply line.
Abstract:
A supply arrangement includes a supply reservoir element and a microfluidic device, wherein the supply reservoir element has a first reservoir unit having a prefilled liquid reagent therein, and the microfluidic device has a reception device adapted for receiving the liquid reagent from the first reservoir unit. The supply reservoir element is coupled to the microfluidic device. One of the supply reservoir element and the microfluidic device includes a puncturing element in order to cause fluid flow of the liquid reagent from the first reservoir unit to the reception device when the puncturing element is operated. The supply reservoir element has a basal plane, and the first reservoir unit has a first blister element arranged on the basal plane.
Abstract:
A sample separation apparatus includes a fluidic valve including a first inlet fluidically coupled to one of a first fluid drive and a second fluid drive, and a second inlet fluidically coupled to the other of the first fluid drive and the second fluid drive. The fluidic valve includes at least two different sets of storage paths, wherein each set of storage paths comprises a first storage path. The first storage path of a first set of said at least two sets of storage paths has a first volume, and the first storage path of a second set of said at least two sets of storage paths has a second volume different from the first volume. The fluidic valve is configured for selectively switching one set of the least two sets of storage paths to the first inlet and the second inlet.
Abstract:
A liquid chromatography device (200) being controllable for executing a chromatographic method (402) defined by a set of target parameters and by a corresponding target sequence of operation procedures, the device comprising a method execution unit (202) configured for executing the chromatographic method (402) by applying the set of target parameters and by running the corresponding target sequence of operation procedures within the liquid chromatography device (200), a determining unit (204) configured for determining a deviation of an actual result of the chromatographic method (402) from an expected target result, wherein the expected target result of the chromatographic method (402) represents a desired behavior of the liquid chromatography device (200) and wherein the actual result of the chromatographic method (402) is obtained by executing the chromatographic method (402) and represents an actual behavior of the liquid chromatography device (200), and an adjusting unit (206) configured for adjusting at least one operation property of the liquid chromatography device (200) based on the determined deviation to thereby at least partially compensate a difference between the expected target result and the actual result while maintaining the chromatographic method (402) unchanged.
Abstract:
A pump unit comprises a primary piston pump, a secondary piston pump, and a flow path adapted for fluidically connecting in series the primary piston pump and the secondary piston pump. The pump unit's duty cycle comprises a delivery-and-fill phase, in which the primary piston pump supplies a flow of liquid to the secondary piston pump, and during the delivery-and-fill phase, the flow of liquid supplied by the primary piston pump is partly used for filling up the secondary piston pump and partly used for maintaining another flow of liquid dispensed across the secondary piston pump. The flow path comprises a heat exchanger, wherein liquid supplied by the primary piston pump passes through the heat exchanger before being supplied to the secondary piston pump. The heat exchanger is adapted for reducing a temperature difference between a temperature of liquid supplied to heat exchanger and a temperature of the secondary piston pump, in that the heat exchanger is kept at a temperature of the secondary piston pump, so that after having passed the heat exchanger, liquid supplied to the secondary piston pump has substantially the same temperature as the secondary piston pump itself.
Abstract:
A liquid delivery system having at least one channel, at least one valve within that channel, at least one flow sensing device within that channel, and a pressure source downstream of the valve capable for generating variable pressures.
Abstract:
A microfluidic arrangement (1) for the optical detection of fluids is provided, comprising a microfluidic device (2) having at least one first channel (3) with an opening (4) which is in fluid communication with an optical detection unit (6) of an optical device (5); the microfluidic device (2) being operatively detachably coupled with the optical device (5) whereby an extension of the part (7,7′) of relevance of the optical detection path (17) is provided. A method for detecting fluids using the arrangement of the present invention is provided.