Abstract:
A pressure vessel fluid manifold assembly includes a pressure vessel having a plurality of lobes joined to each other, each of the plurality of lobes having a wall disposed in contact with an adjacent wall of an adjacent lobe, and wherein the manifold can be external or internal to the lobes.
Abstract:
An underwater carbon dioxide storage facility including a carbon dioxide deposit stored underwater as a clathrate includes a flexible barrier disposed at least partially over the carbon dioxide deposit. The carbon dioxide deposit may be stored in or at the bottom of a body of water.
Abstract:
An underwater carbon dioxide storage facility including a carbon dioxide deposit stored underwater as a clathrate includes a flexible barrier disposed at least partially over the carbon dioxide deposit. The carbon dioxide deposit may be stored in or at the bottom of a body of water.
Abstract:
A tank system for the cryogenic storage of hydrogen includes a tank structure with at least one hollow body for accommodating liquid hydrogen and at least one insulating means, which encloses the tank structure, for insulating the at least one hollow body. The tank structure has an exterior shape that is integrateable in a load-bearing primary structure of an aircraft. The tank structure is load bearing and is designed to at least partially absorb a load introduced into the primary structure. This makes it possible to achieve a particularly efficient design of an aircraft in which the fuselage of the aircraft is not divided into two parts by the hydrogen tank integrated therein, can be arranged near the center of gravity, and essentially does not increase the additional weight of the aircraft.
Abstract:
A structural component having an internal support structure extending between outer wall portions of the component with one or more compartments included within the support structure. The support structure has support members including internal walls positioned between and/or defined by the compartments. At least one support member connects between the outer wall portions of the component to enhance the structural integrity of the component. The structural component, including the internal support, are cast from a molten material, and in some cases the support members of the internal support structure are formed with a rectilinear configuration. In some cases the cast structural component is a container and the one or more compartments are configured to store a fluid, such as a gas or a liquid. One or more preforms can be used to form a container and may be retained or eliminated from the container after casting.
Abstract:
An underwater carbon dioxide storage facility including a carbon dioxide deposit stored underwater as a clathrate includes a flexible barrier disposed at least partially over the carbon dioxide deposit. The carbon dioxide deposit may be stored in or at the bottom of a body of water.
Abstract:
A cryogenic storage tank comprises a partition that divides a cryogen space into a main storage space and an auxiliary space. A valve disposed inside the cryogen space is associated with a first fluid passage through the partition. The valve comprises a valve member that is actuatable by fluid forces within the cryogen space. A second fluid passage through the partition comprises a restricted flow area that is dimensioned to have a cross-sectional flow area that is smaller than that of a fill conduit such that there is a detectable increase in back-pressure when the main storage space is filled with liquefied gas.
Abstract:
A cryogenic storage tank comprises a partition that divides a cryogen space into a main storage space and an auxiliary space. A valve disposed inside the cryogen space is associated with a first fluid passage through the partition. The valve comprises a valve member that is actuatable by fluid forces within the cryogen space. A second fluid passage through the partition comprises a restricted flow area that is dimensioned to have a cross-sectional flow area that is smaller than that of a fill conduit such that there is a detectable increase in back-pressure when the main storage space is filled with liquefied gas.
Abstract:
The present invention relates to a tank for pressurised gas composed of multiple cells joined by means of connection plates (P), in which each cell (C) is composed of a tubular body sealed at the two ends by means of two caps (2) and the adjacent cells communicate in pairs through a series of ducts, which comprises one or more radial ducts (5) obtained on the head (2a) of each cap (2), annular ducts (9) that surround the head (2a) of each cap (2) and transversal holes (10) obtained on the connection plates (P) and designed to provide communication between the adjacent pairs of annular ducts (9).
Abstract:
A flat inner container (3), especially an internal tank for a road vehicle, which is surrounded by an outer container (1) and is used for receiving a cryogenic liquid, particularly a fuel. The inner container (3) comprises a combination of the following features: a longitudinally extending monolithic base (4) with a top wall (5) and a bottom wall (6) which are connected to also longitudinally extending sidewalls (7), and with at least two longitudinally extending, substantially straight webs (9) that connect the bottom wall (6) to the top wall (5) so as to form at least one longitudinally extending chamber (10) which is arranged between the webs, extends along the entire length of the base (4) as well as from the bottom wall (6) to the top wall (5), and has a predetermined width between the webs; and at least two caps (11) which tightly seal the two open ends of the base (4) at the periphery; the top wall and/or the bottom wall is/are provided with an arch relative to a planar reference top wall and/or reference bottom wall, the distance of the arch between the inner contour of the top wall and/or the bottom wall and the planar reference top wall and/or reference bottom wall amounting to less than 30 percent of the width of the chamber in the center between the webs.