Abstract:
Apparatus and methods can include an optical waveguide coupled to a photonic crystal comprising a dielectric material, the photonic crystal located on an exterior surface of the optical waveguide and comprising a first surface including a first array of periodic features on or within the dielectric material, the array extending in at least two dimensions and including an effective dielectric permittivity different from the surrounding dielectric material. In an example, the periodic features include a specified lattice constant, the periodic features configured to extract a portion of propagating optical energy from the waveguide through the photonic crystal, the portion determined at least in part by the specified lattice constant.
Abstract:
A method for manufacturing a spectroscopic sensor 1 comprises a first step of forming a cavity layer 21 by etching a surface layer disposed on a handle substrate, a second step of forming a first mirror layer 22 on the cavity layer 21 after the first step, a third step of joining a light-transmitting substrate 3 onto the first mirror layer 22 after the second step, a fourth step of removing the handle substrate from the cavity layer 21 after the third step, a fifth step of forming a second mirror layer 23 on the cavity layer 21 devoid of the handle substrate after the fourth step, and a sixth step of joining a light-detecting substrate 4 onto the second mirror layer after the fifth step.
Abstract:
Techniques for hyperspectral imaging, including a device for hyperspectral imaging including at least one tunable interferometer including a thin layer of material disposed between two or more broadband mirrors. Electrodes placed on either side of the tunable interferometer can be coupled to a voltage control circuit, and upon application of a voltage across the tunable interferometer, the distance between the mirrors can be modulated by physically altering the dimensions of the thin layer of material, which can uniformly load the broadband mirrors. Physically altering the dimensions of the thin layer of material can include one or more of deformation of a soft material, piezostrictrive actuation of a piezostrictrive material, or electrostrictive actuation of an electrostrictive material.
Abstract:
A portable hyperspectral imager. The imager is modular and may include a hyperspectral camera and a removably-coupled mobile display module. The hyperspectral camera may include an Offner spectrometer. The mobile display module may be adapted to receive data from the hyperspectral camera and may include an internal camera. The mobile display module may include a cell phone or a tablet computer. The mobile display module may be integrally attached to the hyperspectral camera. The integral attachment may include a data link or USB connection. The length of the data link or USB connection may be less than 6 inches and the imager may weigh less than one pound. The imager may include a battery module or a scanning optical module.
Abstract:
A dispersive element is disclosed which is designed to receive incident light (1) and disperse the incident light (1) into multiple spatially separated wavelengths of light. The dispersive body (DB) comprises a collimation cavity (COLL) to collimate the incident light (1), at least two optical interfaces (PRIS) to receive and disperse the collimated light (2) and a collection cavity (CLCT) to collect the dispersed light (3) from the at least two dispersive interfaces (op1, op2) and to focus the collected light (4).
Abstract:
A structure for guiding electromagnetic radiation, including: a substrate; a waveguide provided on the substrate and having a first end for receiving electromagnetic radiation and a second end; and an anti-reflection region provided at the second end of the waveguide on the substrate, the length and the width of the anti-reflection region being optimised to suppress back reflection of radiation that reaches the second end.
Abstract:
A spectral module 1 comprises a substrate 2 for transmitting light L1 incident thereon from a front face 2a, a lens unit 3 for transmitting the light L1 incident on the substrate 2, a spectroscopic unit 4 for reflecting and spectrally resolving the light L1 incident on the lens unit 3, and a photodetector 5 for detecting light L2 reflected by the spectroscopic unit 4. The substrate 2 is provided with a recess 19 having a predetermined positional relationship with alignment marks 12a, 12b and the like serving as a reference unit for positioning the photodetector 5, while the lens unit 3 is mated with the recess 19. The spectral module 1 achieves passive alignment between the spectroscopic unit 4 and photodetector 5 when the lens unit 3 is simply mated with the recess 19.
Abstract:
A spectroscope comprises a package provided with a light entrance part, a plurality of lead pins penetrating through a support part opposing the light entrance part in the package, and a spectroscopic module supported on the support part within the package. The spectroscopic module has a light detection unit provided with a light transmission part for transmitting therethrough light incident thereon from the light entrance part and a spectroscopic unit, secured to the light detection unit so as to be arranged on the support part side of the light detection unit, including a spectroscopic part for spectrally resolving the light transmitted through the light transmission part while reflecting the light to a light detection part. The lead pins are fitted into fitting parts provided with the light detection unit and electrically connected to the light detection part.
Abstract:
An optical filter array includes a substrate permeable to an electromagnetic radiation to be detected, a first DBR mirror arranged on the substrate, a second DBR minor arranged above the first DBR mirror, and a plurality of cavity sections. The cavity sections have different respective optical lengths, and are arranged so as to be spatially separated from each other between the first DBR minor and the second DBR mirror. Each of the first DBR minor, the second DBR mirror, and the plurality of cavity sections with different optical lengths form filter elements of a filter. The filter reflects in a stopband determined by the first DBR mirror and the second DBR mirror. Each filter element has at least one narrow transmission band determined by the optical length of its respective cavity section located inside the stopband. A different thicknesses of the cavity sections is provided via a nanoimprint process.
Abstract:
A spectrometer comprising a waveguide module, a diffractive component, and a light sensor is provided. The waveguide module has a first reflective surface, a second reflective surface opposite to the first reflective surface, and a light channel between the first reflective surface and the second reflective surface. The diffractive component has a diffractive surface and a plurality of strip-shaped diffractive structures located on the diffractive surface. The sharpness of the profile of the strip-shaped diffractive structures on a first side of the diffractive surface is greater than that on a second side of the diffractive surface. When viewed along a direction perpendicular to the second reflective surface, the first side of the diffractive surface is positioned between the first reflective surface and the second reflective surface with a distance away from the second reflective surface. A method for assembling the spectrometer and an assembling system are also provided.