Abstract:
A tristimulus colorimeter employs a multiplexed dual slope integrator digital voltmeter wherein unknown and reference light beams are compared by sequentially applying unknown and reference electrical signals representative of the two respective light beams to the non-inverting and inverting inputs, respectively, of the integrator amplifier. Moreover, a compensating circuit provides for compensation of the colorimeter output signals with respect to reflectance error encountered in the optics portion of the colorimeter with such compensation being provided as a function of the light intensity from the colorimeter light source.
Abstract:
A spectroradiometer having two detectors and a pair of monochromator channels for measuring the intensity of light emitted from an unknown source. One of the monochromator channels is illuminated with light from a reference source, and a fraction of the resulting monochromatic beam is received by the first detector to produce a reference signal. Another fraction of the monochromatic beam is combined with light from the unknown source by directing the two to opposite sides of a rotating chopper and then alternately through the other monochromator channel to the second detector. The second detector produces successive signals respectively corresponding to the intensity of the light from the unknown source and the intensity of the light from the reference source. The ratio between these signals is multiplicatively combined in an electrical circuit with the reference signal from the first detector, thus providing a measurement of the unknown intensity. In cases in which conventional detectors are employed, certain preferred embodiments of the invention include an additional chopper for the light illuminating the monochromator channels to enable a correction for background or dark signals from the detectors.
Abstract:
A fluorescence radiation detector of the Fraunhofer line discriminator type. A sky telescope and an earth telescope each form radiation beams which are directed to a single optical chopper. The chopper sequentially directs each beam through a single Fabry-Perot filter centered at the Fraunhofer line and a single neutral density filter. The chopped segments are recombined to form a beam containing A, B, C, and D portions in time sequence where: A the direct solar intensity within the continuum; B the direct solar intensity inside the selected Fraunhofer line; C the reflected solar intensity inside the selected Fraunhofer line; and D the reflected solar intensity in the continuum. A single photomultiplier tube with a blocking filter in front receives the beam and produces corresponding sequential electrical pulses which are electronically processed to yield fluorescence (p) from the equation
Abstract:
A SPECTROPHOTOMETER WHICH INCLUDES AN OPTICAL SYSTEM ARRANGED BETWEEN THE EXIT SLIT OF A MONOCHROMATOR AND THE SAMPLE CELL SO THAT THE MERIDIONAL AND SAGITTAL IMAGE PLANES OF THE OPTICAL SYSTEM ARE AXIALLY DISPLACED FROM EACH OTHER, THEREBY CAUSING THE BUNDLE OF MONOCHROMATIC LIGHT RAYS TO HAVE A WELL DEFINED, VERY THIN AND SUBSTANTIALY EQUAL CROSS SECTIONAL AREA FOR A LONG DISTANCE ALONG THE OPTICAL AXIS OF THE SYSTEM. WITHIN THIS DISTANCE THE SAMPLE CELL IS PLACED SO THAT THE CELL CAN BE MADE LONGER THAN THE CELLS USED IN THE PRIOR ART SPECTROPHOTOMETERS, WITH THE CROSS SECTIONAL AREA OF THE BUNDLE OF MONOCHROMATIC LIGHT RAYS PASSING THROUGH THE SAMPLE IN THE CELL SUBSTANTIALLY CORRESPONDING TO THE CROSS SECTIONAL AREA OF THE SAMPLE THROUGH THE WHOLE LENGTH OF THE CELL. THIS EN-
SURES EFFICIENT AND ACCURATE MEASUREMENT OF SAMPLES, ESPECIALLY THOSE OF RELATIVELY LOW CONCENTRATIONS.
Abstract:
A spectroscopic system may include: a probe having a probe tip and an optical coupler, the optical coupler including an emitting fiber group and first and second receiving fiber groups, each fiber group having a first end and a second end, wherein the first ends of the fiber groups are formed into a bundle and optically exposed through the probe tip; a light source optically coupled to the second end of the emitting fiber group, the light source emitting light in at least a first waveband and a second waveband, the second waveband being different from the first waveband; a first spectrometer optically coupled to the second end of the first receiving fiber group and configured to process light in the first waveband; and a second spectrometer optically coupled to the second end of the second receiving fiber group and configured to process light in the second waveband.
Abstract:
A measuring light source includes a hollow body having a diffusely reflective inner surface. Formed in the hollow body are a concave, concave mirror-shaped illumination space, a tubular light shaping space, and a concave, concave mirror-shaped light exit space, which have a shared axis. A light source for generating light is at least partially situated in the illumination space. The light exit space has a light exit. The illumination space and the light exit space with their concave mirror shapes are situated opposite one another and are connected by the tubular light shaping space. A diffusely reflecting reflective disk for reflecting the light, reflected from the inner surface of the hollow body situated in the light exit space, through the light exit to outside the hollow body is situated in the hollow body.
Abstract:
Technologies are described for monitoring characteristics of layers of integrated computational elements (ICEs) during fabrication using an in-situ spectrometer operated in step-scan mode in combination with lock-in or time-gated detection. As part of the step-scan mode, a wavelength selecting element of the spectrometer is discretely scanned to provide spectrally different instances of probe-light, such that each of the spectrally different instances of the probe-light is provided for a finite time interval. Additionally, an instance of the probe-light interacted during the finite time interval with the ICE layers includes a modulation that is being detected by the lock-in or time-gated detection over the finite time interval.
Abstract:
Two dimensional (2D) optical spectroscopy, wherein the spectrum has an excitation and an emission axis, reveals information formerly hidden in one-dimensional (1D) optical spectroscopy. However, current two dimensional optical spectroscopy systems are complex laboratory arrangements and accordingly limited in deployment. According to embodiments of the invention a monolithic platform providing significantly reduced complexity and increased robustness is provided allowing for “black-box” modules allowing commercial deployment of 2D optical spectroscopy instruments. Additionally, the invention supports high pulse repetition rates as well as one quantum and two quantum measurements under electronic control.
Abstract:
Disclosed is a highly reliable optical fiber measurement device and measurement method having a simple and compact structure. The device includes a planar liquid holder having a plurality of liquid holding portions arranged along a flat face; a plurality of light receiving optical fibers for transmitting fluorescence generated in the liquid holding portions; a plurality of light emitting optical fibers for transmitting excitation light into the liquid holding portions; a measurement head capable of being positioned in the each liquid holding portion while supporting a plurality of measurement ends having a bundle of one light receiving end of the light receiving optical fibers and one light emitting end of light emitting optical fibers; a light reception selecting element that, by sequentially selecting one by one from plural the light receiving optical fibers and sequentially selecting one by one from plural kinds of wavelength or wavelength bands, sequentially guides the light of the selected wavelength or wavelength band of the fluorescence received by the selected light receiving optical fibers to one photoelectric element; and a photoelectric element for sequentially conducting photoelectric conversion on the guided fluorescence.
Abstract:
A hyperspectral imaging system and method are described herein for providing a hyperspectral image of an area of a remote object (e.g., scene of interest). The hyperspectral imaging system includes at least one optic, a scannable slit mechanism, a spectrometer, a two-dimensional image sensor, and a controller. The scannable slit mechanism can be a micro-electromechanical system spatial light modulator (MEMS SLM), a diffractive Micro-Opto-Electro-Mechanical Systems (MOEMS) spatial light modulator (SLM), a digital light processing (DLP) system, a liquid crystal display, a rotating drum with at least one slit formed therein, or a rotating disk with at least one slit formed therein.