Abstract:
PROBLEM TO BE SOLVED: To facilitate position matching of a plurality of branched light and a plurality of optical fibers in photoacoustic imaging implemented by using the plurality of optical fibers and guiding laser beams.SOLUTION: A photoacoustic imaging device includes a light branching section 12 having a branching diffraction optical element 40 for branching a laser beam Lo incident from an upstream side of the optical system into a plurality of branched beams Ld according to a prescribed branching pattern; and a bundle fiber 14 including a plurality of optical fibers each having a core 13a/clad 13b structure, and in which one end surfaces 13e of a plurality of optical fibers 13 at one end surface 14e of the bundle fiber 14 are arrayed while matching the branching pattern. The bundle fiber 14 is arranged so that the plurality of branched beams Ld are respectively incident to cores 13a of the plurality of optical fibers 13.
Abstract:
An imaging device includes an illumination module comprising at least one emitter for emitting at least one excitation beam; a scanning and injection module comprising an image guide, a proximal end and a distal end of which are linked by a plurality of optical fibers; a scanning and injection optical system configured to alternately inject the at least one excitation beam into an optical fiber of the image guide from the proximal end of the image guide; a detection module comprising a detector for detecting a luminous flux collected at the distal end of the image guide, wherein at least one of the illumination module and the detection module is optically conjugated with the scanning and injection module using a conjugating optical fiber.
Abstract:
PROBLEM TO BE SOLVED: To provide a biological measurement apparatus for measuring a location at which a light adsorber such as a tumor exists in the entire to-be-measured region. SOLUTION: The biological measurement apparatus 10 includes: a vessel 12 for holding an optical interface material 20; a light irradiation means for irradiating the to-be-measured region immersed in the optical interface material 20 with first and second lights having different wavelengths; a light detection means for detecting a diffusion light from the to-be-measured region; and a calculation/control section 14 for calculating internal information from an output signal of the light detection means. The wavelength λ1 of the first light is a wavelength at which an absorption coefficient of the to-be-measured region is substantially equal to an absorption coefficient of a medium. The wavelength λ2 of the second light is a wavelength at which the absorption coefficient of the to-be-measured region is larger than the absorption coefficient of the medium. The calculation/control section 14 calculates the internal information from the output signal related to the diffusion light of the first light, and calculates a boundary between the to-be-measured region and the optical interface material 20 from the output signal related to the diffusion light of the second light. COPYRIGHT: (C)2009,JPO&INPIT
Abstract:
An optical measurement device is provided. The device includes first and second optical fibers; first and second reaction vessels, and a light guide stage coupled to the first and second optical fibers. The light guide stage is driven to simultaneously optically connect the first and second optical fibers with the first and second reaction vessels. The device includes a measurement device for receiving emissions from the first and second reaction vessels, and a connecting end arranging body that supports the first and second optical fibers along a path. The arranging body is driven along the path between a first position, in which the first optical fiber is optically connected with the measurement device so that light is transmittable from the first reaction vessel, and a second position, in which the second optical fiber is optically connected with the measurement device so that light is transmittable from the second reaction vessel.
Abstract:
A system including a light source, sampling tray, and a plurality of fiber optics positioned to achieve high contrast to improve accuracy and eliminate the need to rotate the sample. A composite light image from the fiber optics is fed to a spectrometer which converts the reflected light into a fingerprint corresponding to the concentration of at least one substance in the sample. The fingerprint is processed by a statistical model to determine concentration level of the at least one substance in the sample and the concentration level is then displayed.
Abstract:
Instruments, devices and methods of analysis are provided which fully integrate a significant number of process steps in a continuous operation. Accurate positioning and full contact between components is also provided by the relative movement the designs allow. An effect interface between a low cost disposable cartridge or device and the instrument to process it is also detailed.
Abstract:
A system and a method for optical sensing of single molecule or molecules in various concentrations are provided. The optical sensor system comprises a first fiber, a second fiber, a light source and a detection device. The first fiber and the second fiber are fused together to form an optical coupler. The first fiber serves as the passageway for the analyte, while the second fiber serves as the waveguide for the light that will interact with the said analyte. One end of the second fiber is connected to the light source (e.g. laser), and the opposite end is connected to the detection device (e.g. spectrometer). The analyte is introduced into the first fiber through one of its ends, and is allowed to flow through inside the hollow core of the said first fiber. When light is delivered through the input end of the second fiber, the evanescent light is formed in the optical coupler and is allowed to interact with the analyte in the first fiber. One scenario in this analyte-light interaction results in, for example, the generation of Raman emission that is used as the probing signal. The spectrum of the Raman emission is analyzed by the detection device to determine the presence of target molecule.
Abstract:
A food integrity probe design comprising two illumination fiber rings, allowing for two different simultaneous measurements wherein the inner illumination ring generates a surface reflectance signal on the central detection fibers and the outer illumination ring allows for an additional interactance measurement, probing deeper into the sample than the surface reflectance alone while partially eliminating specular reflection, which reduces the signal quality, through the addition of a ring-shaped diffusor onto the inner illumination ring is disclosed.